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1 Introduction

The first attempts to apply the tools of modern formal logic to analyse ques-
tions date back to the 1920s. However, substantial progress took place from
the 1960s on. The research of logicians resulted in formal systems for the
representation of questions, as well as in many important conceptual distinc-
tions. Although theorizing on questions had been initiated by logicians, lin-
guists entered the game soon after in parallel with consecutive developments
in formal (and then computational) linguistics. The borders between logic and
formal linguistics are not sharp. However, the aims and methods are diverse.
As a result, the flow of ideas is often limited: each community seems unaware
(with notable exceptions, of course) that a lot of relevant work has been done
in the neighbouring discipline.

This chapter is devoted to the semantics of questions. The perspective
adopted here is that of a logician. A linguist might find the exposition incom-
plete. Yet, there is a hope that might be provided useful information or even
inspiring insights.
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2 Setting the Field

When speaking about questions, one can have in mind: (i) interrogative sen-
tences (interrogatives for short), (ii) the meanings/semantic contents of inter-
rogatives, or (iii) speech acts typically performed in uttering interrogatives.
There are theories of questions which concentrate on (i) and/or (ii), and ignore
(iii), while other theories overestimate (iii). In the majority of cases, however,
(i), (ii) and (iii) are considered, although with emphasis put on one or other
of them.

Theories of questions aim at modeling natural-language questions (here-
after: NLQ’s) by providing their syntactic and/or semantic representations.
Some theories provide syntax and semantics for interrogatives of artificial (in-
cluding formal) languages as well.

No commonly accepted theory of questions has been elaborated so far. In
section 3 we present the most influential proposals.

2.1 Questions vs. propositions

Interrogatives differ from declaratives syntactically and pragmatically. But is
there any substantial difference at the semantic level? In particular, is it the
case that interrogatives, contrary to appearance, in fact denote propositions?

Consider:

(1) Who likes Mary?
(2) Does John like Mary?

and

(1*) Peter knows/discovered/told us who likes Mary.
(2*) Peter knows/discovered/told us whether John likes Mary.

Since “knows”, “discovers”, “tells” and other so-called factive predicates select
for propositions, one can argue that embedded interrogatives have a proposi-
tional denotation. Assuming that the denotation of an embedded interrogative
equals the denotation of the corresponding interrogative, direct interrogatives
would have denoted propositions as well. However, the matter is more com-
plicated. The above conclusion would be generally binding if, first, there were
no predicates which embed interrogatives but not declarative complements,
and, second, each predicate that embeds declarative complements would also
embed interrogative complements. Neither of these holds, however. Karttunen
(1977) points out that there are predicates which embed interrogative com-
plements, but not declarative complements, for example:

(1**) Peter asked/wondered/investigated/discussed who likes Mary.
(1#) # Peter asked/wondered/investigated/discussed that John likes

Mary.
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Thus although, on some uses, interrogatives seem to denote propositions, it
cannot be said that interrogatives always denote propositions. Ginzburg & Sag
(2000) convincingly argue that the so-called true/false predicates (“believe,’
“assert,’, “deny,” “prove,” etc.) select for propositions, but are incompatible
with interrogative complements. In their opinion, the best explanation of the
fact that the true/false predicates do not select for interrogatives lies in assum-
ing that interrogatives never denote propositions within an enriched ontology
for concrete and abstract entities, inspired by Vendler (1972).

2.2 Answers and answerhood

Questions (semantically or pragmatically construed) come as a pair with pos-
sible answers. One should not identify answers with replies. In principle, every
expression can serve as a reply to any question, viz.:

(1) Who likes Mary?
(3) It’s rather cold outside.

After Grice, there is nothing surprising in that. But the Gricean-style reason-
ing of a questioner who has just received a nonrelevant reply is triggered by
noticing that the reply is transparently non-relevant. This, in turn, requires
a certain account of answerhood, maybe only a fuzzy one, but still definite
enough to enable noticing that an interlocutor deliberatively does not obey
the cooperation principle. So possible answers are not just possible replies.
Furthermore, “being a possible answer” is semantically laden. The semantics
of questions attempts to give account of answerhood in general as well as of
different types of possible answers.

Principal possible answers (PPA’s). Some possible answers seem “better”
than others. For example, assume that the information request carried by
(1) is something like:

(4) Please indicate all the persons that like Mary.

where “indicate” is a cover term for different ways of referring to a person or
persons. Given the assumption, each of the following:

(5) John likes Mary
(6) John and Helen like Mary

is a possible answer to the question, though (leaving implicatures apart) an
insufficient one. On the other hand, any of:

(7) Only John likes Mary.
(8) John and Helen like Mary, and nobody else does.

is a possible answer that is “optimal” in the sense that it provides information
of the required kind and, at the same time, provides neither more nor less
information than it is requested by the question. Answers of this kind are
usually labelled direct. As Harrah (2002, p. 1) puts it, a direct answer:
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(OA1) “gives exactly what the question calls for. [. . . ] The label ‘direct’ [. . . ]
connotes both logical sufficiency and immediacy.”

Note that being true is not a prerequisite for being a direct answer.
However, (1) can also be understood as expressing a less demanding in-

formation request:

(9) Please indicate at least one person that likes Mary.

Assume that (1) is construed in this way. Now (5) and (6) are direct answers
to the question under consideration, while (7) and (8) are not direct answers
to it, since they provide more information than it is requested.

Some theorists label the “optimal” possible answers as conclusive, or con-
gruent, or proper, or exhaustive, or complete, and so forth. Each of these names
is a telling one, and the choices made reflect the underlying ideas of “optim-
ality.” Since the terminology is still diverse, we need a cover term. The ex-
pression principal possible answers (PPA’s for short) seems appropriate here,
so we will be using it as the cover term.

Other kinds of possible answers. Clearly, PPA’s are not the only possible
answers. For example, each of the following:

(10) John likes Mary or Helen likes Mary
(11) Neither John nor Helen likes Mary
(12) Nobody likes Mary

also constitutes a possible answer to the question whose information request
is (9), though neither of them is a PPA. (10) is a partial answer: it does
not resolve the question, but narrows down the space of possibilities. (11)
is an eliminative answer: it excludes some possibilities. As for (12), opinions
are divided. Some theorists would consider it as a PPA. As a consequence,
the set of PPA’s to the question would cover the space of all possibilities.
Other theorists claim that the analyzed question is loaded : it presupposes
that somebody likes Mary. On this account (12) is a corrective answer: it
contradicts the presupposition and yields that no PPA to the question is true.

The categories of answers pointed out above do not exhaust the field.
In particular, the following can also be regarded as possible answers to the
analysed question:

(13) John and possibly Helen like Mary
(14) John and Helen
(15) Her fiancé

(14) and (15) are short answers. A short answer is expressed by a non-
sentential utterance, that is, a fragmentary utterance which does not have
the form of a complete sentence. Nevertheless, a short answer conveys in-
formation analogous to that carried by a sentence. The meaning of a short
answer is co-determined by its direct semantic contribution and the question
currently under discussion. Logicians tend to regard short answers as coded
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sentential/propositional answers. The attitude of many linguists is different.
In any case, a BNC corpus study (cf. Fernández et al. 2007) reveals that short
answers constitute the second largest fraction of all nonsentential utterances
in dialogues.

The terminology pertaining to answers other than PPA’s, as well as their
taxonomy depend on a theory. No commonly accepted, unified account has
been elaborated yet. (The concepts of partial, eliminative and corrective an-
swers used above will be explicated in subsection 5.4.)

2.3 Further issues

Let us now briefly mention some other question-related semantic phenomena.

Correctness and types of questions. It is highly dubious whether NLQ’s have
logical values. However, some NLQ’s seem semantically, say, sound, while some
others are “semantically faulty.” For example, the following:

(16) Which natural number is smaller than 2?

is sound, in contradistinction to, for example:

(17) Which natural number is smaller than 0?
(18) Which natural number is smaller than itself?
(19) Have you done what you haven’t done?

Besides soundness/unsoundness, NLQ’s exhibit diverse semantic features
worth being conceptualized in exact terms. We address this issue in Section 5,
using the conceptual framework of Minimal Erotetic Semantics (MiES).

Semantic dependencies. There are many semantic dependency relations between
questions. Consider:

(20) Does anybody like Mary?
(1) Who likes Mary?
(2) Does John like Mary?

(1) is dependent upon (20) in the following intuitive sense of the word: (1)
arises from the affirmative answer to (20), while the negative answer to (20)
suppresses (1). (2) is dependent upon (1), though in a different sense: the
affirmative answer to (2) provides an answer to (1) and the negative answer to
(2) eliminates an answer to (1). There are more semantic dependency relations
between questions (e.g. “being equivalent”, “being weaker than”, etc.), as well
as between (sets of) declaratives and questions. We address the dependency
issue in sections 5 and 6.
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Inferences and validity. Questions (semantically construed) are often arrived
at on the basis of declaratives and/or questions, viz.:

(21) Either John or Helen likes Mary

Does John like Mary?

(22) Does anybody like Mary?
Everybody dislikes Mary, possibly with the exception of John.

Does John like Mary?

One can argue that arriving at a question resembles coming to a conclusion:
there are premises involved and an inferential thought process takes place.
Some inferences of this kind seem intuitively valid, while others are transpar-
ently nonvalid. One of the challenges to the semantics of questions is to give
an account of the relevant concept of validity. In section 6 we show how the
above issue is resolved by inferential erotetic logic.1

1 The logic of questions is sometimes called erotetic logic, from Greek erotema
which means “question”.
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3 Theories of Questions

In this section we show how questions are conceptualized in logic and formal
linguistics. For the reasons of space we concentrate on the most influential
theories and their basic claims.

3.1 Questions as sets of declaratives

As we pointed out above, the reduction of questions to propositions is prob-
lematic. An alternative solution is to treat the meaning of an interrogative as
a set of propositions. When we are wary concerning ontological commitments,
this reduces to: the meaning of an interrogative is a set of declaratives. The
idea of conceiving questions as sets of expressions was introduced by one of
the pioneers of erotetic logic, Gerold Stahl (cf. Stahl 1956, 1962).

But is any set of declaratives a question semantically construed? Saying
“yes” immediately puts us into a trouble: there are many more questions than
interrogatives. Really many more: when the set of declaratives is countably
infinite, the set of questions becomes uncountably infinite. We obtain this res-
ult by Cantor’s diagonal argument. (For this and more results of that kind see
Harrah 1969). So maybe only recursive sets of declaratives constitute ques-
tions? But this solution gives rise to another difficulty. It can be shown that,
given some reasonable assumptions, there exist recursive sets of declaratives
(actually, denumerably many of them) of a language which are not assigned
to any interrogative of the language (see Wísniewski & Pogonowski 2010).

One can prefer generality over factivity and still sustain the claim that any
set of declaratives is a question. The price to be paid is nonexpressibility of
some questions of a language in the language. But usually a different strategy
is adopted. Only some, but not all sets of declaratives are regarded as questions
semantically construed. Sometimes questions are defined as sets of declarat-
ives which are “available” from the corresponding interrogatives by means of
certain syntactic transformations. Purely semantic solutions have also been
proposed. For example, one can claim that a set of declaratives constitutes a
question if the relevant declaratives are mutually exclusive (hereafter: ME);
that is, the truth of an element of the set yields the falsity of all the other
elements. This does not exclude, however, that all the elements are simultan-
eously false. So the safety requirement (SF) can additionally be imposed: it
is impossible that all the relevant declaratives are simultaneously false.

The informal idea that lies behind conceiving questions as sets of declar-
ative sentences is the reduction of questions to sets of PPA’s. Let us consider
the following set of declaratives:

(23) {John is both a philosopher and a logician, John is a philosopher,
but not a logician, John is a logician, but not a philosopher, John
is neither a philosopher nor a logician}
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Both ME and SF hold for (23). So, assuming that ME and SF constitute,
jointly, a sufficient condition for being a question semantically construed, (23)
is a question and thus the meaning of some interrogative(s). But which inter-
rogative(s)? Presumably, among others, the following one:

(24) Is John a philosopher and a logician?

However, what about the interrogative sentence:

(25) Is John a philosopher, or a logician?

Certainly, there is a reading of (25) under which it is synonymous with (24).
But there is also a reading — and thus a meaning — of (25) such that the
following constitutes the set of PPA’s:

(26) {John is a philosopher, John is a logician}

As neither ME nor SF holds for (26), it is not a question semantically con-
strued, that is, not a meaning of any interrogative.

So something went wrong. A refinement is needed. There are different
rescue options possible. But, as no agreement has been reached yet, we stop
here.

The reduction of questions to sets of declaratives is currently not main-
stream in erotetic logic. We have paid disproportionate attention to it for
two reasons. First, due to its generality and simplicity, the idea provides a
temptation to logicians who only occasionally enter the area of questions and
questioning. Second, similar difficulties emerge when questions are reduced
to sets of propositions, where propositions are understood as meanings of
declaratives.

3.2 Questions as epistemic imperatives

The underlying idea of the imperative-epistemic approach to questions is that
the meaning of an interrogative is just the meaning of its imperative-epistemic
paraphrase. Here are schemata of such paraphrases, proposed by Åqvist (1965)
and Hintikka (1976), respectively:

(27) Let it be the case that I know . . .
(28) Bring it about that I know . . .

The ellipsis should be filled by an embedded interrogative sentence. So we
have, for example:

(29) Let it be the case that I know who likes Mary.
(30) Bring it about that I know who likes Mary.

But what about meanings of the relevant embedded interrogatives? They are
characterized in terms of epistemic logic. The meaning of the imperative op-
erator used, in turn, is determined by a logic of imperatives.
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Let us take Hintikka’s account as an illustration. The expression that suc-
ceeds the imperative operator is a description of the epistemic state of affairs
the questioner wants the respondent to bring about. It is called the desid-
eratum. Desiderata of various questions involve such epistemic modalities as
“know whether,” “know where,” “know who,” “know when,”, and so forth.
The corresponding concepts of knowledge are explicated by Hintikka in terms
of the concept of “knowing that.” In doing this he makes use of his earlier
results in epistemic logic, but also introduces some modifications and novelties
to them.

Question-forming words (i.e. “which,” “what,” “where,” “who, ” etc.) are
analyzed as a kind of ambidextrous quantifiers; that is, quantifiers which can
be construed either existentially or universally. For example, the desideratum
of “Who likes Mary?” can be either:

(31) ∃x(x likes Mary ∧ ∃y (y = x ∧ K(y likes Mary)))

or

(32) ∀x(x likes Mary → ∃y (y = x ∧ K(y likes Mary)))

where K stands for the knowledge operator.

In Hintikka’s theory the role of PPA’s is performed by conclusive answers.
Intuitively, a conclusive answer is

(OA2) “a reply which does not require further backing to satisfy the ques-
tioner.” (Hintikka 1978, p. 287).

Possible replies and so-called conclusiveness-conditions are characterized first
(in syntactic terms), and then a possible reply is regarded as a conclusive
answer if this reply together with the description of the questioner’s state of
knowledge entails (by means of the underlying epistemic logic) the desider-
atum of the question. For example, “John likes Mary” is a conclusive answer
to “Who likes Mary?” understood according to (31) on condition that a ques-
tioner knows who John is.

3.3 Questions as interrogative speech acts semantically construed

It is sometimes claimed that the meaning of an interrogative can be adequately
characterized by a paraphrase that specifies the illocutionary act typically
performed in uttering the interrogative. Roughly, questions are thus viewed
as speech acts of a special kind, that is, as interrogative acts. The latter are
modeled within a semantic framework, with the concept of a success condition
playing a key role.

For example, in Vanderveken (1990), account an elementary illocutionary
act has two semantic constituents: the illocutionary force and the proposi-
tional content. As for an interrogative act, the illocutionary force amounts to
a request of the speaker to the hearer. What a hearer is supposed to do is
specified by the propositional content of an interrogative act. Roughly, he or
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she is requested to perform a future speech act which conveys information of
the required kind, that is, provides a resolving answer to the question under
consideration.

Vanderveken’s analysis works fine in the case of polar interrogatives. For
example, when we have:

(2) Does John like Mary?

its analysis amounts, informally, to the following:

(33) I request that you assert that John likes Mary or deny that John
likes Mary.

But constituent interrogatives raise difficulties. For an interesting discussion
of Vanderveken’s account see (Groenendijk & Stokhof 1997).

3.4 Questions as sentential functions

Let us compare the interrogative:

(1) Who likes Mary?

with the following condition:

(34) . . . likes Mary

where the ellipsis is supposed to be filled with an expression referring to a
person.

Neither (1) nor (34) has a content definite enough to enable an assign-
ment of a truth value. In this sense they are both semantically incomplete.
Moreover, it can be argued that they share a presupposition, namely “Someone
likes Mary”. This presupposition, however, works differently in either case. If
nobody likes Mary, (34) cannot be completed to a true proposition saying that
a given person likes Mary, while (1) cannot be answered with a true answer
of this kind.

Conditions like (34) are modeled in classical logic as sentential functions.
Syntactically, a sentential function is a well-formed formula with one or more
free variable(s). Semantically, a sentential function expresses a condition that
may be satisfied by some objects and not satisfied by others. One can claim
that, on the semantic level, there is no difference between an interrogative
and a sentential function. In brief: questions are sentential functions. Cohen
(1929) is regarded as the first to put forward this idea.

The reduction of questions to (semantic counterparts of) sentential func-
tions goes smoothly for constituent interrogatives, but the cases of polar inter-
rogatives and coordinated interrogatives are more complex. Let us consider:

(2) Does John like Mary?
(35) Has John left for a while, or has he never lived here?

As for (2), the relevant condition is:
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(36) . . . John likes Mary.

and thus the corresponding sentential function should be:

(37) ξ John likes Mary.

But what is the semantic range of ξ? And in the case of (35): what is the
condition?

3.5 From sentential functions to their interrogative closures

Let us consider the sentential function:

(38) x likes Mary

and let us close it by means of an interrogative operator “Who x”. We get:

(39) Who x (x likes Mary)

The result is a semi-formal representation of “Who likes Mary?”. It is syn-
tactic. What about the semantic side? “Who x” determines the semantic range
of x: the range equals the set of persons. The variable x is free in (38). But
“Who x” binds x in (39) to the effect that its value must belong to the range
determined by “Who x.”

What we have sketched above is a part of the semantic analysis of in-
terrogative sentences proposed by Ajdukiewicz (1926). “Where”, “when” and
“how” interrogatives are analyzed along similar lines. Interestingly enough,
the general schema is applied to polar interrogatives as well. The semi-formal
representation of:

(2) Does John like Mary?

amounts to:

(40) Oξ (ξ John likes Mary)

where Oξ is an interrogative operator that limits the possible values of variable
ξ to the (extensional) operators of assertion and negation.

Ajdukiewicz is better known as the founding father of categorial grammar
than as a pioneer in the logic of questions. His 1926 paper is a short note
written in Polish, so its international impact was limited. But Ajdukiewicz’s
idea has found its developments in the work of Polish logicians, in particular
Tadeusz Kubiński (discussed below) and Leon Koj (cf. Koj 1972, 1989).

3.6 Interrogative operators: Kubiński’s account

The leading idea of Kubiński’s analysis is that a question consists of an inter-
rogative operator and a sentential function. Interrogative operators, in turn,
comprise constants and variables. The only free variables in the sentential
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functions that occur in questions are the variables of the corresponding inter-
rogative operators. These variables are “bound” by the relevant interrogative
operators. The general schema of an interrogative2 is:

Oυ1, ..., υnA(υ1, ..., υn)

where υ1, ..., υn are the only variables that occur free in A(υ1, ..., υn). Inter-
rogative operators may contain (and thus bind) variables belonging to various
syntactical categories. Generally speaking, the categories of variables indicate
the (ontological) categories of objects which are asked about. For example, if
an operator involves only individual variable(s), the corresponding questions
ask about individuals. If the relevant variables run over sentential connect-
ives, then the corresponding questions are about either the existence of some
state(s) of affairs or some connection(s) between states of affairs. Moreover,
there exist “mixed” interrogatives, that is, interrogatives whose operators con-
tain variables belonging to two or more different categories.

For reasons of space, let us concentrate upon interrogative operators with
individual variables. Here are examples of the so-called simple numerical in-
terrogative operators:

Operator Standard reading

k ≤ x for which [at least k] x
k < x for which [more than k] x
kx for which [exactly k] x
Cx for which [all ] x
(k ≤)x which are all [at least k] x such that
(k <)x which are all [more than k] x such that
(k)x which are all [exactly k] x such that

where k is a numeral and x is an (individual) variable.
Simple numerical operators are not enough, however. Let us consider the

following interrogative sentence:

(41) Which three boys love which two girls?

Clearly, different readings of (41) are possible. For example, (41) can be inter-
preted as expressing a question that asks about three boys and two girls such
that each of these girls is loved by exactly one of the boys. But (41) can also
be understood as a question that asks about three boys and two girls such
that each of the boys loves the two girls, or as a question that asks about
three boys and some (but at least two and no more than six) girls such that
each of the boys loves two of the girls. Sometimes (41) can be construed as
expressing a question that asks about a complete list of boys and girls fulfilling
one of the above conditions. Other readings are also possible. Observe that

2 In Kubiński’s terminology, this is a schema for questions rather than interrogat-
ives. Kubiński speaks about questions of formalized languages.
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the ambiguity effect is not only due to the presence of numerical expressions.
It shows up in their absence as well, as in:

(42) Which boys love which girls?

By and large, compound numerical interrogative operators disambiguate mul-
tiple wh-questions. A compound numerical interrogative operator is not
simply a string of interrogative quantifiers: it also includes some constants
which, in effect, characterize the relevant scope dependencies.

Interrogatives are accompanied with sets of direct answers, defined purely
syntactically. But direct answers are also:

(OA3) “these sentences which everybody who understands the question ought
to be able to recognize as the simplest, most natural, admissible answers
to the question.” (Kubiński 1980, p. 12)

This is stated in pragmatic terms. However, recall the famous Hamblin (1958,
p. 162) dictum:

“Knowing what counts as an answer is equivalent to knowing the ques-
tion.”

We can reverse the perspective: once we have an interrogative/question Q
of a formal language, we also know what counts as a direct answer to Q.
Furthermore, we can say that Q represents a NLQ Q∗ construed in such a way
that the “simplest, most natural, admissible answers” to Q∗ have the syntactic
form of direct answers to Q. Thus the relation between NLQ’s and Kubiński’s
interrogatives/questions of formal languages is not 1–1. Interrogatives display
possible readings of NLQ’s. Needless to say, many (if not all) of the latter
allow for multiple readings.

Kubiński did not provide any explicit semantic account of interrogative
operators. But the remaining constituents of interrogatives, as well as direct
answers, are expressions of semantically interpreted formal languages. Thus
one can speak about entailment relation(s) between direct answers, and this,
given the assignments of direct answers to interrogatives, enables a character-
ization of certain semantic relations between questions/interrogatives (such
as being equipollent, being weaker than, being stronger than, etc.).

Remark. Kubiński was one of the founding fathers of erotetic logic (the story
is told by Harrah 1997). His first paper in English devoted to the topic was
presented at an international congress in 1958 (cf. Kubiński 1960). Unfortu-
nately, his monograph in English, (Kubiński 1980), based on (Kubiński 1971),
written in Polish, was published after the influential book by Belnap & Steel
(1976). The issues addressed by Kubiński in the 1960s (possible readings,
scope dependencies, quantifying into questions, etc.) were later, independ-
ently, analyzed by formal linguists, but presumably without knowledge of his
proposals.
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3.7 Subjects and requests: Belnap

The basic idea of Belnap’s theory (cf. e.g. Belnap & Steel 1976) of questions
is that a question offers a set of “alternatives” together with some suggestions
or indications as to what kind of choice or selection among them should be
made. The proposed account of the logical structure of interrogatives reflects
this idea.

For brevity, let us concentrate upon the so-called elementary interrogat-
ives. On Belnap’s account, an elementary interrogative consists of the ques-
tion mark “?”, a request, and a subject.3 The function of the subject is to
offer the relevant (nominal) alternatives, whereas the function of the request
is to characterize the required kind of selection. The role of the question mark
is to assign the corresponding question (conceptualized as an abstract object
defined set-theoretically) to the pair “request–subject” of an interrogative.

An elementary interrogative falls under the schema:

? scd (η)

where:

1. η is the subject;
2. s is the selection-size specification: its role is to characterize the quantity

of alternatives expected to occur in a direct answer (i.e. “exactly n”, “at
least n”, “at most m”, “at least n but at most m”, etc.);

3. c and d are the completeness claim and the distinctness claim, respectively.
Roughly, c specifies “how many” (in the qualitative sense) of the assumed
as true alternatives should occur in a direct answer, while a (nonempty) d
acts to the effect that a direct answer should involve semantically distinct
alternatives.

As for elementary interrogatives, c can be either empty or maximal (nota-
tion:− and ∀, respectively). Similarly, there are elementary interrogatives with
nonempty d’s (notation: 6=) and with empty d’s (notation: −). The selection-
size specification “select at least n, but at most m” (n ≥ 1) is expressed by
m
n ; if the upper bound is undetermined, we write −n .

When the constituents of an interrogative are specified, so are the corres-
ponding answerhood conditions. As Belnap puts it:

“what counts as an answer to an interrogative arises out of the mean-
ings of its constituents and its structure” (Belnap 1990, p.13).

This, in particular, pertains to direct answers which perform the role of
PPA’s of Belnap’s theory. The underlying intuition is that direct answers:

3 To be more precise, of a lexical subject and a lexical request. Belnap provides
syntax for interrogatives, but also assigns abstract, nonlinguistic counterparts to
the relevant syntactic items (the counterparts are labelled real). For the reasons
of space we do not characterize them here.
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(OA4) “are directly and precisely responsive to the question, giving neither
more nor less information than what is called for” (Belnap 1969a, p.124).

Direct answers to elementary interrogatives are defined purely syntactically.
As for more complex interrogatives, both syntactic and semantic means are
used. As in the case of Kubiński, there is no 1–1 correspondence between
interrogatives and NLQ’s.

Some examples may be helpful. Let us consider:

(25) Is John a philosopher, or a logician?

The subject of an interrogative that corresponds to (25) is:4

(43) (John is a philosopher, John is a logician)

However, (25) is equivocal. One can construe it as requesting a single choice
between the alternatives given. This is reflected by the following request:

(44) 1
1 −−

Under this reading direct answers are simply the alternatives. However, since
being a logician does not exclude being a philosopher, (25) can also be un-
derstood as allowing for a multiple choice; the corresponding request would
be:

(45) 2
1 −−

and “John is both a philosopher and a logician” becomes a (new) direct an-
swer. One can also require an exclusive choice among the alternatives. Now
the request is:

(46) 1
1∀−

and the direct answers are: “John is a philosopher, but not a logician” and
“John is a logician, but not a philosopher”.

Let us come back to:

(1) Who likes Mary?

The subject (written semi-formally) is:

(47) (x is a person ‖x likes Mary)

The (nominal) alternatives are of the form “b likes Mary”, where b is a name
of a person. Depending on readings, the corresponding requests are diverse.
The following:

(44) 1
1 −−

reflects the “give-me-one-example” reading; now each alternative is a direct
answer. When we have:

4 For transparency, we use natural language expressions in characterizing subjects.
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(48) −1 −−

the “mention-some” reading is the assumed one; direct answers are the al-
ternatives and conjunctions of (nonequiform) alternatives. If, additionally, it is
required that the persons mentioned are to be really distinct, the distinctness-
claim is non-empty, viz.:

(49) −1 − 6=

and each direct answer involving a conjunction of alternatives includes also a
constituent saying that the names used refer to distinct persons.

It can also happen that it is the “complete list” of persons liking Mary
which is requested. We would have:

(50) −1 ∀−

or:

(51) −1 ∀ 6=

depending on whether the distinctness claim is empty or not. In both cases
direct answers are supposed to include, additionally, completeness-clauses of
the form:

(52) ∀x: if x is a person that likes Mary, then x = b1 or . . . or x = bk.

When the distinctness claim is nonempty and k > 1, a direct answer should
also include a constituent saying that b1, . . . , bk are pairwise distinct.

Although the way we have presented examples obscures this, interrogatives
are well-formed formulas of a formal language in which declarative well-formed
formulas (d-wffs for short) also occur. The “declarative part” of such language
is supplemented with an extensional semantics. Since direct answers are d-wffs,
they have logical values. Belnap assigns logical values to interrogatives as well,
though in an indirect manner. An interrogative is true in a model iff at least
one direct answer to the interrogative is true in the model.5 Once we have the
concept of truth of interrogatives, the other semantic concepts (entailment,
validity, etc.) apply to them as well. Moreover, one can define some semantic
concepts that are specific only to interrogatives. We will make use of some of
Belnap’s proposals in section 5.

3.8 Questions as intensions of interrogatives: basic approaches

The development of Montague Semantics and intensional logics in general has
resulted in elaborating intensional theories of questions.6

Probably the most influential papers on questions written within the inten-
sional paradigm are (Hamblin 1973) and (Karttunen 1977). Generally speak-
ing, in both cases the intension/meaning of an interrogative is a function from

5 Cf. Belnap & Steel (1976, p. 119).
6 For intensional logics see e.g. (Lappin 2015).
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possible worlds to denotations, and the extension/denotation of an interrog-
ative (in a world) is a set of propositions. The crucial difference between
Hamblin and Karttunen lies in the fact that Hamblin regards the relevant
propositions as expressing possible answers, while for Karttunen they express
true answer(s). As an illustration, let us, again, come back to:

(1) Who likes Mary?

According to Karttunen, the denotation of (1) in the actual world is the set
of true (w.r.t. the word) propositions that state of a person that he/she likes
Mary. More generally, the denotation of (1) in a world w is the value of:7

(53) λp(∃x(p = λw(likes-Mary(w)(x))) ∧ p(w))

for w, that is, roughly, is the set of all propositions which are true in w
and “state” of some x that the value of x in w belongs to the extension of
likes-Mary in w.

According to some intensional theories, the extension/denotation of an
interrogative (in a world) is not a set of propositions, but, depending on
the type of interrogative analyzed, a truth value, or an individual, or a set
of individuals (cf. e.g. Tichy 1978). The so-called categorial (or functional)
approach conceives meanings of interrogatives as functions from categorial
answers to propositions. To be more precise, the meaning of an interrogative
is a function that assigns propositions to the meanings of categorial answers,
where categorial answers are either declarative sentences or nonsentential ut-
terances/expressions: noun phrases, adverbs, etc. (cf. e.g. Hausser 1983). In
view of the structured meaning approach (cf. e.g. Krifka 2001) the meanings
of interrogatives are functions which, when applied to the meanings of “short”
answers (cf. page 5), yield propositions. The relevant short answers refer to
object belonging to a common ontological category and a formalization makes
this explicit. For example, the meaning of (1) is characterized by:

(54) λw(λx ∈ Persons(w)(likes-Mary(w)(x)))

When w is the actual world, Persons(w) is the set of persons. By dropping
the references to a possible world we get a simpler schema:

(55) λx ∈ Persons(likes-Mary(x))

A full answer is a proposition which, generally speaking, is the value of the
(function characterizing the) meaning of an interrogative for an argument
being a short/constituent answer.

3.9 Questions as partitions of the logical space: Groenendijk and
Stokhof

Groenendijk & Stokhof (1984, 1997) also regard questions as intensions of
interrogatives. However, the concept of intension used is different. Generally

7 For brevity, we do not use the original PTG notation; moreover, “likes-Mary”
is conceived as a one-place predicate. p(w) says that proposition p is true in w.
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speaking, on this account a question is viewed as a set of propositions (i.e.
sets of possible worlds) which constitutes a partition of the logical space of
possible worlds. The propositions belonging to a question are thus mutually
exclusive and their union is the set of all possible worlds.8 The idea of con-
ceiving questions as partitions of “possible states of nature” is also present in
other theories of questions, starting from (Higginbotham & May 1981). The
“partition” approach to questions is currently among the most widely adopted
(cf. Dekker et al. 2007).

For reasons of space let us only consider Groenendijk and Stokhof’s ac-
count of yes-no questions. Interrogatives that correspond to yes-no questions
have the form ?A, where A is a declarative formula. Call a model a set of
possible worlds. Let:

[A]M,w

stand for the extension of A in world w of model M, that is, the truth value
assigned to A in world w of M. The set of worlds:

[A]M = {w ∈M : w(A) = 1}

is the intension of A in M. The extension of interrogative ?A in world w of
model M, [?A]M,w, is the set of worlds:

{w∗ ∈M : [A]M,w∗ = [A]M,w}

that is, roughly, the set of all the worlds ofM in which A has the same truth
value as in w. The intension of interrogative ?A in M, [?A]M, is the set of
possible extensions of the interrogative in M, i.e. the set:

{[?A]M,w : w ∈M}

Now the question expressed by ?A inM is identified with the intension of ?A
in M.

A semi-formal example may be helpful. Given the definitions introduced
above, we get:

[? Does John like Mary ]M = {[John likes Mary ]M,M\ [John likes Mary ]M}

The intension/question is thus a two-element set of sets of possible worlds.
Since a set of possible worlds is (or may be counted as) a proposition, a
question is a set of propositions. Moreover, the propositions in the set are
mutually exclusive, and they exhaust the logical space consisting of all the
possible worlds in M. To put it in the form of a slogan: a yes-no question is
a bipartition of the logical space.

8 This corresponds, in a sense, to the famous Hamblin’s statement: “The possible
answers to a question are an exhaustive set of mutually exclusive possibilities.”
(Hamblin 1958, p. 162)
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Other questions are viewed in a similar manner. They are still partitions,
but not necessarily bipartitions. Of course, the notions of model, extension
and intension are more complicated when wh-interrogatives and quantified
formulas are taken into consideration.

Answerhood is defined as follows:

(i) φ is an answer to Q in model M if and only if for some w ∈M : [φ]M ⊆
[Q]M,w

(ii) φ is an answer to Q if and only if φ is an answer to Q in each model.

A complete answer is a proposition being a cell of the corresponding partition.

3.10 Questions as propositional abstracts: Ginzburg’s account

Another influential approach to questions is based on situation semantics.9

The old idea, according to which questions are akin to “open propositions”,
is conceptualized by Ginzburg (1995) (see also Ginzburg & Sag 2000) by
conceiving questions as propositional abstracts.

At the start, one considers a universe which contains among its members a
class of entities called situations (these are partial, temporally located, actual
entities) and a class of entities called states-of-affairs (hereafter: SOA’s). In
addition, the universe comprises relations as well as possibilities, facts, and
outcomes.

A SOA is a structured object constructed from a relation and an assign-
ment of entities to the argument roles of the relation. (Relations are not
conceived as sets of ordered tuples, but as unstructured atomic individuals.)
Here is an example of SOA (the notation is self-explanatory):

(56) 〈〈Like,{likes:John,is liked:Mary}〉〉

The role of SOA’s is to designate properties that situations might possess.
SOA’s may be supported by situations; for instance, each situation in which
John likes Mary supports the above SOA. There are positive and negative
SOA’s; the latter are constructed from the former via an adverbial-like op-
erator. Atomic propositions, in turn, are defined in terms of situations and
SOA’s: prop(s,α) is the proposition that s is a situation of the type desig-
nated by SOA α. The set of propositions includes atomic propositions and
is closed under certain operations of negation, meet and join. The situation
theory used by Ginzburg supports a form of abstraction. This abstraction
differs from that of Lambda Calculus (and hence, Montague Semantics) in
that it permits both simultaneous abstraction of more than one variable, and
vacuous abstraction.

Questions are then conceived as abstracts from propositions. Thus, for
example, we have:

9 For situation semantics see, e.g., (Devlin 2006), (Seligman & Moss 2011), (Mares
et al. 2011).
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(57) λ{ }prop(s,〈〈Like;{likes:John,is liked:Mary}〉〉)
(58) λ{x}prop(s,〈〈Like;{likes:x,is liked:Mary}〉〉)
(59) λ{x, y}prop(s,〈〈Like;{likes:x,is liked:y}〉〉)

for “Does John like Mary?”, “Who likes Mary?” and “Who likes what?”
respectively.

The above idea can be also expressed in a much richer theoretical setting of
Type Theory with Records, TTR for short. (For TTR see Cooper 2005, 2012,
Cooper & Ginzburg 2015). Both situations and propositions can be modeled
within the TTR ontology, by identifying them with certain types of records.
TTR uses the standard notion of abstraction based on functional types. Given
all this, one can reformulate the theory of questions as propositional abstracts
in a way that avoids the nonstandard situation-theoretic notion of abstraction;
see (Ginzburg 2005, 2012). Basic, noncompound questions are functions from
records into propositions.

As for answerhood, Ginzburg proceeds as follows. There are information
items which, intuitively speaking, are about a given NLQ. Some (but not all)
of them can be regarded as those which potentially resolve the question: the
relevant concept of a potentially resolving answer is characterized in detail
for the types of NLQ’s analyzed. However, one should not confuse potential
resolvedness with resolvedness. The latter is relative to contextual factors,
among which a purpose/goal of a questioner and her knowledge/belief state
(including her deductive abilities) play crucial roles. A detailed analysis re-
veals what is a resolving answer in a given context. Since resolving answers are
(and must be, as Ginzburg convincingly argues) contextually parametrized,
answerhood does not serve as a basis in defining the meanings of interrogat-
ives.

3.11 Questions in Inquisitive Semantics

Inquisitive semantics (INQ for short) originated from an analysis of questions,
but currently evolves toward a general theory of meaning. The beginnings
of INQ date to the late 1990s. INQ, however, is currently a research pro-
gramme rather than a completed theory: alternative accounts are still being
proposed.10

The basic idea of INQ can be briefly expressed as follows: the meaning
of a sentence comprises two components, informative content and inquisitive
content. The former is the information provided by a sentence, the latter is
the issue raised by the sentence. By and large, if the information provided
is sufficient to settle the issue that is raised, the sentence is an assertion. If,
however, the information provided is insufficient to settle the raised issue, the
sentence is inquisitive. For example, the sentence:

10 For various versions of INQ see, e.g., (Groenendijk & Roelofsen 2009), (Ciardelli
& Roelofsen 2011), (Ciardelli et al. 2013), (Ciardelli et al. 2015).
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(8) John likes Mary

raises the issue whether John likes Mary and provides information that John
likes Mary. (8) is thus an assertion. The following:

(60) Either John or Helen likes Mary

raises the issue who likes Mary, John or Helen, but the information provided
by (60) amounts to the claim that one of the above possibilities holds and thus
is insufficient to settle the raised issue. Hence (60) is inquisitive. Observe that
inquisitive sentences are akin to questions in being carriers of information to
be completed.

In what follows we concentrate upon the “basic,” most often used system
of INQ, labelled InqB, and we remain at the propositional level only. An inter-
esting feature of InqB is that questions are indistinguishable from declaratives
syntactically.11 Being a question is a semantic property that some declarative
sentences/formulas possess.

Let LInqB be a propositional language over a set of propositional variables
P. The primitive logical constants of LInqB are: ⊥,∨,∧,→. Well-formed for-
mulas (wffs) are defined as usual. LInqB is supplemented with a possible-world
semantics; a possible world is conceived either as a subset of P or as a binary
valuation of P. Regardless of which of these accounts is adopted, the set W
of suitable worlds for the language is determined.

A state is a subset of W. States are thus sets of possible worlds. One
can think of such sets as modelling information states. Singleton sets/states
correspond to information states of maximal consistent information, while
W corresponds to the ignorant state, i.e. an information state in which no
possible world is excluded. ∅ represents the absurd state.

Both “ingredients” of meaning, informative content and inquisitive con-
tent, are defined in terms of support, being a relation between states and
wffs. In the case of InqB support, �, is defined as follows (the letters σ, τ are
metalanguage variables ranging over states, and p runs over P):

(a) σ � p if and only if for each w ∈ σ: p is true in w,
(b) σ � ⊥ if and only if σ = ∅,
(c) σ � (A ∧B) if and only if σ � A and σ � B,
(d) σ � (A ∨B) if and only if σ � A or σ � B,
(e) σ � (A→ B) if and only if for each τ ⊆ σ: if τ � A then τ � B.

Inquisitive negation is introduced by:

¬A =df (A→ ⊥)

Thus we get:

(neg) σ � ¬A if and only if for each τ ⊆ σ such that τ 6= ∅ : τ 6� A.

11 This does not hold for INQ in general; see e.g. (Ciardelli et al. 2015).
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The definition of support by a state generalizes the standard definition of
truth in a world. To see this, it suffices to put σ = {w} and then replace
“{w} � A” with “A is true in w”. We get the usual clauses defining truth of
a wff in a world. However, the generalization is nontrivial. Support by a state
does not amount to truth in each world of the state: the clauses for disjunction
and implication (and also negation) are more demanding.

The informative content of a wff A, info(A), is defined as follows:

info(A) =
⋃
{σ ⊆ W : σ � A}

while the inquisitive content of a wff A, inqct(A), is defined by:

inqct(A) = {σ ⊆ info(A) : σ � A}.

A wff A is inquisitive if and only if

info(A) 6∈ inqct(A)

that is, the informative content of A does not support A. Let:

tset(A) = {w ∈ W : A is true in w}.

INQ labels tset(A) as the truth set of A. Speaking in more traditional terms,
tset(A) is simply the proposition expressed by A.12

In the case of InqB (but not INQ in general) we have:

info(A) = tset(A)

and hence A is inquisitive if and only if:

tset(A) 6∈ inqct(A)

Here are examples of inquisitive wffs:

(61) p ∨ r
(62) p ∨ ¬p

(61) is inquisitive since tset(p ∨ r) = tset(p) ∪ tset(r), and neither p nor r is
supported by tset(p) ∪ tset(r). (62) is inquisitive because tset(p ∨ ¬p) = W,
but W 6� p as well as W 6� ¬p. Speaking in general terms: the information
carried by the disjunction (61) is insufficient to settle the issue which of the
disjuncts hold(s). As for (62), p∨¬p carries no factual information and hence
the issue of whether p holds remains unresolved.

12 However, the concept of proposition used in InqB is “lifted”: a proposition is a
set of sets possible worlds. More precisely, a proposition expressed by wff A is
inqct(A).
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An interesting property of InqB-inquisitiveness is that each inquisitive wff
expresses at least two possibilities, where a possibility is a maximal state closed
under support. More precisely, a state σ is a possibility for a wff A just in
case σ � A and for each w 6∈ σ : σ ∪ {w} 6� A.

The property of being a question is not identified with inquisitiveness, but
with noninformativeness. A wff A is noninformative if and only if

tset(A) =W.

Noninformative wffs are just classical tautologies. Therefore each wff having
the property of being a question is a classical tautology, and each tautology is
(more precisely: has the property of being) a question. Hence, similarly as in
the case of the partition approach (see subsection 3.9), a question “covers” the
whole logical space. A substantial difference lies in the fact that the possibilit-
ies expressed by an inquisitive question (i.e. a wff which is both noninformative
and inquisitive) need not be disjoint. (62) is an inquisitive question. Here are
further examples of inquisitive questions:

(63) p→ r ∨ ¬r
(64) (p ∨ ¬p) ∨ (r ∨ ¬r)

Observe that both (63) and (64) have constituents which are questions them-
selves.

The interrogative operator “?” is introduced by the following definition:

?A =df A ∨ ¬A

Thus (62), (63) and (64) can be respectively written as:

(65) ?p
(66) p→ ?r

(67) ?p ∨ ?r

One should not confuse the above definition with a syntactic characterization
of questions/interrogatives. Also, it is not claimed that each question is a yes-
no question. For example, neither (63) nor (64) falls under the schema A∨¬A.
(63) represents a conditional NLQ calling for answers of the forms p→ r and
p → ¬r. (64), in turn, represents an alternative question that calls for the
following answers: p, ¬p, r, ¬r.

3.12 General remarks. E-formulas

Let us end this section with some metatheoretical remarks.
A formal theory of questions, logical or linguistic, has to “incorporate”

interrogatives into a formal language which, initially, had not been designed
for representing NLQ’s. Generally speaking, this can be done in two ways.
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I. (The “Define within” approach.) One can define questions in the
metalanguage of the language considered, and then regard as interrogatives
these (already present) meaningful expressions of the language which express
questions just defined. For convenience, one can then operate with some spe-
cific interrogative formulas but they are only abbreviations of the correspond-
ing expressions of the language, and, what is more important, their semantics
is just the semantics of the corresponding expressions.

II. (The “Enrich with” approach.) One can enrich a language with in-
terrogatives. In order to achieve this, one extends the vocabulary and then
introduces interrogatives syntactically, as a new category of well-formed for-
mulas. The new category is distinct from the remaining ones both syntactically
and semantically.

Regardless of which approach is adopted, one ends with a class of erotetic
formulas or e-formulas for short.

Let us stress: e-formulas need not be defined or determined purely syn-
tactically. They can be characterized in semantic terms, for example as the
well-formed formulas that “correspond” to questions semantically construed,
or have the semantic property of being a question, etc. We use the term
“e-formula” instead of “erotetic well-formed formula” (or “e-wff”) in order to
avoid the suggestion that the relevant formulas have to be defined inductively.

The general picture is the following:

FormL = DL ∪ EL ∪ . . .

where DL is the set of declarative well-formed formulas (d-wffs for short) of a
language L, EL is the set of e-formulas of the language, and the ellipsis indic-
ates that the set of formulas of a language under consideration can also include
well-formed/meaningful expressions of other kind or kinds (optatives, imper-
atives, exclamatives, . . . ). Recall that, on some accounts, EL is not disjoint
with the remaining item(s).

Characterizing e-formulas is only the starting point. The crucial issue is
to assign principal possible answers (PPA’s) to them. As we have illustrated
above, this can be (and is!) done in many ways, and with different basic
intuitions in mind.

Most (if not all) e-formulas considered within a theory are objects supposed
to represent the corresponding NLQs. Similarly, PPAs to e-formulas that rep-
resent NLQs should represent PPAs to the corresponding NLQs. However, the
concept of principal possible answer to a NLQ is vague. The underlying intu-
itions are expressed by using, among others, pragmatic terms.13 Furthermore,
NLQs permit multiple readings. Or, to put it differently, in many cases con-
textual and/or pragmatic factors co-determine what is “directly and precisely
responsive to the question, giving neither more nor less information than what
is called for,” or what is a just-sufficient (i.e. immediate and sufficient) pos-

13 Cf., e.g., OA1 (p. 5), OA2 (p. 10), OA3 (p. 14), OA4 (p. 16).
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sible answer, etc. Thus, as a matter of fact, e-formulas and NLQs are linked
as follows:

(♠) An e-formula Q represents a NLQ Q∗ construed in such a way that
possible answers to Q∗ having the desired semantic and/or pragmatic prop-
erties are represented by PPAs to Q.

Of course, a theory can be rich enough to give its own accounts of the
desired properties, as, for example, Hintikka’s theory does (here the conclus-
iveness issue can be resolved by means of an epistemic logic). But NLQs still
permit multiple readings and thus one has to decide in advance what ex-
actly is to be modeled. On Hintikka’s account, question-forming words are
akin to ambidextrous quantifiers (see subsection 3.2) and one can “calculate”
conclusive answers only after deciding which reading of a NLQ is taken into
consideration.
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4 Minimal Erotetic Semantics: Basics and Tools

Minimal erotetic semantics (MiES for short) enables an introduction of some
important semantic notions pertaining to e-formulas. In defining these notions,
one makes use of the existence of an already established assignment of PPAs
to e-formulas, and of semantic concepts pertaining to d-wffs of a language.
Minimal erotetic semantics combines some ideas present in Belnap’s erotetic
semantics (cf. Belnap & Steel 1976, chap. 3) with certain insights to be found
in (Shoesmith & Smiley 1978). Needless to say, MiES goes beyond them.

Minimal erotetic semantics remains neutral in two respects. It does not
presuppose what is the logic of d-wffs. The general conceptual framework
of MiES is compatible with classical logic as well as with nonclasical logics.
Moreover, MiES is applicable regardless of whether — and if yes, how —
questions themselves have been previously conceptualized semantically. If they
were, MiES provides a “second collection” of semantic concepts pertaining to
e-formulas. Otherwise MiES allows us to speak about e-formulas in semantic
terms even if their semantic content has been left undefined.

In what follows we present only some elements of MiES. We focus on
concepts relevant to the issues mentioned in subsection 2.3. A more detailed
exposition of MiES can be found in (Wísniewski 2013, chap. 3 and 4).14

4.1 Partitions, admissible partitions, and entailment

The precondition of applicability of MiES is the following: we deal with a
formal language in which both d-wffs and e-formulas are present. Languages
fulfilling the precondition are diverse. Moreover, their “declarative parts” are
governed by different logics. So we need a general, uniform framework which
relies neither on the choice of logic for d-wffs nor on syntactic forms of e-
formulas. The framework, however, should enable us to operate with adequate
(at least with respect to scopes) counterparts of entailment and entailment-
related semantic notions defined in the “original” semantics of the declarative
part of a language.

Notation. In what follows we use the letters A, B, C, D, with or without
subscripts, as metalanguage variables for d-wffs, and the letters X, Y , Z,
with subscripts if needed, as metalinguistic variables for sets of d-wffs.

For conciseness, we abbreviate “if and only if” as “iff.”

We start with a technical concept of partition of a language. Let L be a
formal language of the kind considered here. First, we define the concept of
partition of the set DL of d-wffs of L.15

14 For a model-theoretic variant of MiES see (Wísniewski 1997a) or (Wísniewski
1995, chap. 4).

15 Definition 1 mirrors the definition of the concept of partition of the set of wffs of
a “question-free” formal language, provided by (Shoesmith & Smiley 1978, p. 15).
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Definition 1. (partition of the set of d-wffs) By a partition of DL we
mean an ordered pair:

P = 〈TP,UP〉
where TP ∩ UP = ∅ and TP ∪ UP = DL.

Intuitively, TP consists of all the d-wffs which are “true” in P, and UP is made
up of all the d-wffs which are “untrue” in P. But “true” is used here as a
general cover term which, as we will see, is construed differently in different
cases and, in particular, is not synonymous with “true in the actual world”. For
stylistic reasons, however, it is convenient to speak about truths and untruths
of a partition.

Besides d-wffs, L has also e-formulas among its meaningful expressions.
But MiES remains neutral in the controversy whether e-formulas/questions
have truth values. So we put:

Definition 2. (partition of a language) By a partition of L we mean a
partition of DL.

Thus what is “partitioned” is the set of d-wffs only. Note that we use the
term “partition” in a sense different from that adopted in the Groenendijk
and Stokhof’s theory (see subsection 3.9).

The above concept of partition is very wide and admits partitions which
are rather odd from the intuitive point of view. For instance, 〈DL, ∅〉 is a
partition, and, for any d-wff A, 〈DL \ {A}, {A}〉 is a partition. In order to
avoid oddity on the one hand, and to reflect some basic semantic and/or logical
facts concerning (the declarative parts of) a language under consideration, we
distinguish the class of admissible partitions, being a non-empty subclass of
the class of all partitions of the language. By and large, an admissible partition
splits the set of d-wffs into disjoint sets of “truths” and ”untruths” in a way
that “agrees” with a semantics of the declarative part of a language considered
and/or by the logic built in it.

Let us stress: we do not assume that a language has only one admissible
partition. There usually exist many such partitions (see below).

Let X ⊆ DL and A ∈ DL. Entailment in L, symbolized by |=L, can be
defined in terms of admissible partitions, according to the following pattern:

Definition 3. (Entailment) X |=L A iff there is no admissible partition
P = 〈TP,UP〉 of L such that X ⊆ TP and A ∈ UP.

Depending on a language and its admissible partitions, we get either en-
tailment determined by classical logic or by a nonclassical logic.

4.2 Admissible partitions and entailment: examples

Let us illustrate the above general considerations with some examples. We
start with some propositional languages/logics, and then we turn to the first-
order case.
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Terminological remark: e-formulas and questions. From now on, for purely
stylistic reasons, we will be speaking of questions instead of e-formulas. The
reader is kindly requested to remember that “question” below means, unless
otherwise stated, only “e-formula.”

Enriching propositional languages with questions

D-wffs of the propositional languages with questions considered below are
simply the wffs of the initial propositional languages. Questions are introduced
according to a common pattern. We enrich the vocabulary with the signs: ?,
{, }, and the comma. A question (i.e. e-formula) is an expression of the form:

(68) ?{A1, . . . , An}

where n > 1 and A1, . . . , An are nonequiform, that is, pairwise syntactically
distinct, d-wffs of the language under consideration.

If (68) is a question, then each of A1, . . . , An is a principal possible answer
(PPA) to the question, and these are the only PPA’s to it.

Note that questions are not sets of d-wffs, but object-level language ex-
pressions of a strictly defined form. In particular, ?{p, q} 6= ?{q, p}.

The schema (68) is general enough to capture most (if not all) of propos-
itional questions studied in the literature. Any question of the form (68) can
be read: “Is it the case that A1, or . . . , or is it the case that An?”. How-
ever, sometimes more specific readings can be recommended. For instance,
the following:

(69) ?{A,¬A}

(70) ?{A ∧B,A ∧ ¬B,¬A ∧B,¬A ∧ ¬B}

can be read: “Is it the case that A?” and “Is it the case that A and is it the
case that B?” respectively. For conciseness, we will be abbreviating (69) by

(71) ?A

and (70) by:

(72) ?± |A,B|.

Language L?
CPL

Let LCPL be the language of classical propositional logic (CPL). We enrich
LCPL with questions in the manner described above. The enriched language is
labelled by L?

CPL.
A CPL-valuation is a function from the set of d-wffs of L?

CPL (i.e. wffs of
LCPL) into the set of truth values {1,0}, defined in the usual way.

Definition 4. (Admissible partitions of L?
CPL) A partition P = 〈TP,UP〉

of L?
CPL is admissible iff for some CPL-valuation v:
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(1) TP = {A ∈ DL?
CPL

: v(A) = 1}, and

(2) UP = {B ∈ DL?
CPL

: v(B) = 0}.

Thus the set of “truths” of an admissible partition equals the set of d-wffs
which are true under the corresponding valuation.

Observe that all the usual semantic properties are retained, but now they
can be rephrased in terms of admissible partitions. Note that entailment in
L?
CPL reduces to CPL-entailment.

Language L?
S4

Modal propositional languages with questions are constructed similarly as
the language L?

CPL. The difference lies in taking the language of a modal
propositional logic ` as the point of departure.

As an illustration, let us consider the case of S4. The d-wffs of the relevant
language L?

S4 are the wffs of the language LS4 of S4. Questions are introduced
according to the pattern presented above. We make use of the standard rela-
tional semantics of S4. A S4-model is an ordered triple:

〈W,R, V 〉

where W 6= ∅, R ⊆ W ×W is both reflexive and transitive in W , and V :
DLS4

×W 7→ {1,0} satisfies the usual conditions.

Definition 5. (Admissible partitions of L?
S4) A partition P = 〈TP,UP〉

of L?
S4 is admissible iff for some S4-model 〈W,R, V 〉 and for some w ∈W :

(1) TP = {A ∈ DL?
S4

: V (A,w) = 1} and

(2) UP = {B ∈ DL?
S4

: V (B,w) = 0}.

Thus the set of “truths” of an admissible partition consists of all the d-wffs
(i.e. wffs of LS4) which are true in the corresponding world of a given model.
Entailment in L?

S4 reduces to the so-called local entailment in S4.

Language L?
InqB

Let us enrich the language LInqB (of the basic system of INQ; see subsection
3.11) with questions. Recall that a state is a subset of an already given set
of possible worlds, and that the set of possible worlds is determined by LInqB.
Admissible partitions are defined in terms of support.

Definition 6. (Admissible partitions of L?
InqB) A partition P = 〈TP,UP〉

of L?
InqB is admissible iff for some state σ:

(1) TP = {A ∈ DL?
InqB

: σ � A} and

(2) UP = {B ∈ DL?
InqB

: σ 6� B}.
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When we combine Definition 6 with Definition 3, we get entailment un-
derstood in a somewhat non-standard way, as the “transmission of support”.
Yet, this is how entailment is in fact construed in InqB. One can define |=InqB

in a more traditional manner, reflecting the idea of “transmission of truth”,
but this requires an introduction of a (non-standard) concept of truth. For
details see Wísniewski (2014).

Language L?
MCL

Let LMCL be the language of Monadic Classical Logic with Identity (MCL for
short). For simplicity, let us assume that the vocabulary of LMCL contains an
infinite list of individual constants, but does not contain function symbols.
Wffs of LMCL are defined in the standard way. A sentential function is a wff
in which a free variable occurs; otherwise a wff is a sentence.

We construct a language L?
MCL which has a declarative part and an erotetic

part. The declarative part of L?
MCL is LMCL itself. As for the erotetic part, we

add the following signs to the vocabulary of LMCL: ?, {, },S,U, and the comma.
Questions of L?

MCL fall under the following schemata:

(68) ?{A1, . . . , An}

where n > 1 and A1, . . . , An are nonequiform (i.e. pairwise syntactically
distinct) sentences of LMCL, being the PPA’s to the question;

(73) ?S(Ax),
(74) ?U(Ax)

where x stands for an individual variable and Ax is a sentential function of
LMCL which has x as the only free variable. (73) can be read “Which x is such
that Ax?”, while (74) reads: “What are all of the x’s such that Ax?”.

PPA’s to (73) are instantiations (by individual constants) of Ax. Thus the
PPA’s are sentences of the form A(x/c), where c is an individual constant.
PPA’s to (74) have the form:

(75) A(x/c1) ∧ . . . ∧A(x/cn) ∧ ∀x(Ax→ x = c1 ∨ . . . ∨ x = cn)

where n ≥ 1 and c1, . . . , cn stand for distinct individual constants.16

16 The symbols S and U belong to the vocabulary of the object-level language L?
MCL.

However, we can introduce them to the metalanguage as well, yet with different
meanings. We can assume that on the metalanguage level S(Ax) designates the
set of all the sentences of the form A(x/c), whereas U(Ax) designates the set of all
the sentences of the form (75). Now we are justified in saying that each question
of L?

MCL consists of the sign ? followed by an (object-level language) expression
which is equiform to a metalanguage expression that designates the set of PPA’s
to the question. (Observe that this is not tantamount to a reduction of questions
to sets of d-wffs. Questions are still linguistic expressions of a strictly defined
form.) What we gain is transparency: it is easy to say what counts as a PPA to
a question.
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As for the semantics of L?
MCL, we make use of the model-theoretic semantics

of LMCL that operates with the concepts characterized below. A model of
L?
MCL is an ordered pair M = 〈M,f〉, where M is a nonempty set, and f

is a function which assigns an element of M to each individual constant of
L?
MCL, and a subset of M to each unary predicate of L?

MCL. An M-valuation
is a denumerable sequence of elements of M . The concepts of value of a term
under an M-valuation, and of satisfaction of a d-wff by an M-valuation are
defined in the standard manner. A d-wff A is true in a modelM = 〈M,f〉 iff
A is satisfied by each M-valuation.

We define the class of normal models. Roughly, a model M = 〈M,f〉 of
L?
MCL is normal just in case all the elements of M are named by individual

constants of L?
MCL. To be more precise, by a normal model of L?

MCL we mean
a model M = 〈M,f〉 of the language such that for each y ∈ M we have:
y = f(ci) for some individual constant ci of L?

MCL.
As long as normal models are concerned, the truth of an existential gen-

eralization, ∃xAx, warrants the existence of a true PPA to the corresponding
question, ?S(Ax). This is why we have distinguished these models here.

Admissible partitions are defined in terms of normal models:

Definition 7. (Admissible partitions of L?
MCL) A partition P = 〈TP,UP〉

of L?
MCL is admissible iff for some normal model M of L?

MCL:

(1) TP = {A ∈ DL?
MCL

: A is true in M}, and

(2) UP = {B ∈ DL?
MCL

: B is not true in M}.

Hence the set of “truths” of an admissible partition equals the set of d-wffs
which are true in the corresponding normal model.

One can prove that in the case of finite sets of d-wffs, entailment in L?
MCL

reduces to entailment determined by classical logic. The situation changes,
however, when infinite sets of d-wffs are taken into consideration.

Remarks. The reference to normal models is the key feature of the above con-
struction. We have distinguished them for “erotetic” reasons. However, when
we deal with a first-order (or a higher-order) language enriched with ques-
tions, normal models can be distinguished for many reasons and in different
manners. For example, one can define them as models of a theory expressed in
the declarative part of the language (that is, models of the language in which
all the theorems are true), or as models which make true some definition(s). It
is also permitted to consider all models as normal. Each decision determines
the corresponding entailment relation.

Nothing prevents us from taking a richer first-order language (or a higher-
order language) as the point of departure, and from introducing other categories
of wh-questions according to the above pattern. For possible developments see
(Wísniewski 1995, chap. 3).
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4.3 A digression: the minimalistic method of determining
admissible partitions

So far we have determined admissible partitions by making use of already given
semantics of the “declarative parts” of the analyzed languages. However, there
exists a more general method of determining admissible partitions.

Let L be a language of the analyzed kind such that the declarative part of
L is the language of a logic `; the d-wffs of L are just the wffs of the language
of `.

A logic determines the corresponding consequence relation; it is a binary
relation between sets of wffs on the one hand and individual wffs on the other.
Let `` stand for the consequence relation determined by `.

Assume that `` is not universal (i.e. `` 6= ℘(DL) × DL, where ℘(DL) is
the power set of DL). First, we introduce:

Definition 8. (Proper partitions) A partition P = 〈TP,UP〉 of L is im-
proper iff for some set X of d-wffs of L and some d-wff A of L such that
X `` A we have: X ⊆ TP and A ∈ UP; otherwise P is called proper.

The second step is to define the class of admissible partitions of L as the
subclass of the class of all proper partitions of the language that fulfils a
certain condition.

Definition 9. (The class of admissible partitions) The class ΠL of ad-
missible partitions of L is the greatest class of proper partitions of the language
that is closed under the following condition:

(♥) if X 6`` A, then for some partition P = 〈TP,UP〉 in ΠL : X ⊆ TP and
A ∈ UP

for any set of d-wffs X of L and any d-wff A of the language.

We get:

Corollary 1. `` = |=L.

Thus entailment in L amounts, set-theoretically, to the consequence rela-
tion determined by the logic `. This facilitates possible applications.

Let us stress that the above construction permits that ` is a nonclassical
logic (but, still, a monotonic logic.)

Terminology. Let P = 〈TP,UP〉 be a partition. By saying that wff A is true
in P we mean that A belongs to TP.

4.4 Multiple-conclusion entailment

It is natural to think of questions which have well-defined sets of PPA’s as of-
fering sets of “possibilities” or “alternatives”, among which some selection or
choice is requested to be made. When we are interested in relations between
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questions and contexts of their appearance, some notion of, to speak gen-
erally, “entailing a set of possibilities” is needed. There is a logic, however,
within which such notion is elaborated on: it is multiple-conclusion logic (see
Shoesmith & Smiley 1978). This logic generalizes the concept of entailment,
regarding it as a relation between sets of d-wffs. The entailed set is conceived
as, intuitively speaking, setting out the field within which the truth must lie
if the premises are all true. The concept of multiple-conclusion entailment is
one of the main conceptual tools of MiES.

Let L be a language of the kind considered here, and let X and Y be
sets of d-wffs of L. The relation ||=L of multiple-conclusion entailment in L
is defined as follows:

Definition 10. (Multiple-conclusion entailment) X ||=L Y iff there is
no admissible partition P = 〈TP,UP〉 of L such that X ⊆ TP and Y ⊆ UP.

Thus X multiple-conclusion entails (mc-entails for short) Y iff there is no
admissible partition in which all the d-wffs in X are true and no d-wff in Y is
true. In other words, mc-entailment between X and Y holds just in case the
truth of all the d-wffs in X warrants the presence of some true d-wff(s) in Y :
whenever all the d-wffs in X are true in an admissible partition P, then at
least one d-wff in Y is true in the partition P.

Definition 10 offers a nontrivial generalization of the concept of entailment.
It happens that a set of d-wffs X mc-entails a set of d-wffs Y , but no element
of Y is entailed by X. For example, we have:

{p, p→ q ∨ r} ||=L?
CPL
{q, r}

on the one hand, and neither

{p, p→ q ∨ r} |=L?
CPL

q

nor

{p, p→ q ∨ r} |=L?
CPL

r

on the other hand.17 So one cannot define mc-entailment of a set of d-wffs
as (“single-conclusion”) entailment of an element of the set. But, intuitively
speaking, mc-entailment between X and Y amounts to (single-conclusion)
entailment of a “disjunction” of all the Y ’s from a “conjunction” of all the X’s.
However, we cannot use this idea as a basis for a definition of mc-entailment.
There are languages of the considered kind in which disjunction does not occur
or is understood differently than in Classical Logic. Moreover, Y may be an
infinite set and an infinite “disjunction” need not be expressible in a language
(similarly for X and conjunction).

Note that entailment understood according to Definition 3 can be con-
ceived as a special case of mc-entailment, namely as mc-entailment of a
singleton set.

17 The letters p, q, r stand, here and below, for propositional variables.



Semantics of Questions 35

5 Minimal Erotetic Semantics: Questions

The “erotetic” concepts of MiES introduced in this section, as well as in Sec-
tion 6, are applicable only to e-formulas/questions for which sets of sentential
PPA’s are defined. A sentential PPA is a PPA which has the form of a d-wff.

From now on, we will be considering (unless otherwise stated) an arbitrary
but fixed formal language L of the analyzed kind; by d-wffs and questions we
will mean d-wffs and e-formulas of the language, respectively. Language L is
supposed to satisfy the following conditions: (a) it has questions and d-wffs
among well-formed expressions, (b) for any question of the language, the set
of PPA’s to the question is defined; the set has at least two elements, (c)
PPA’s are d-wffs, and (d) the class of admissible partitions of L is defined.

Terminology and notation. For the sake of brevity, in what follows we omit
the specifications “of L” and “in L”. Similarly, we write |= instead of |=L, and
||= instead of ||=L. We omit curly braces when referring to singleton sets of
premises.

We use dQ for the set of all the PPAs to question Q.

5.1 Soundness of a question

MiES does not presuppose that questions are true or false. Instead, the concept
of soundness of a question is used.

The underlying intuition is: a question Q is sound iff at least one principal
possible answer (PPA) to Q is true. So, for example, the question: “Who is the
only author of Principia Mathematica?” is not sound, whereas the question:
“Who were the authors of Principia Mathematica?” is sound.18 Similarly, the
question: “What is the smallest natural number?” is sound, but the question:
“What is the greatest natural number?” is not sound.

Of course, when a formal language is concerned, the concept of soundness
needs a relativization.

Definition 11. (Soundness of a question) A question Q is sound in a
partition P iff dQ ∩ TP 6= ∅.

Thus a question is sound in a partition if at least one PPA to the question
is true in the partition. The basic idea underlying the above definition was
suggested by Bromberger (1992, p. 146).

Remark: NLQs and truth values. It is highly disputable whether a NLQ can
be assigned truth or falsity understood in the literal sense. But one can try to
assign to NLQ’s some other “truth values”. For example, Nelken & Francez
(2002) opt for resolved and unresolved, and develop an interesting extensional
semantics for languages with questions. The crucial difference between their

18 Recall that Principia Mathematica was written by two authors.
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proposal and the MiES account lies is using a three-valued logic to create
tripartitions of the set of d-wffs (the third value is labeled “unknown”). In
view of (Nelken & Francez 2002) a yes-no question, ?A, gets the value resolved
if A is either true or false, and gets the value unresolved if the value of A is
“unknown.”

Safety and riskiness

It can happen that a question is sound in one admissible partition and is not
sound in some other(s). If, however, a question is sound in each admissible
partition of a language, we call it a safe question. More formally:

Definition 12. (Safety) A question Q is safe iff dQ ∩ TP 6= ∅ for each
admissible partition P.

It is obvious that the set of PPAs to a safe question is mc-entailed by the
empty set. Observe, however, that a question can be safe although no PPA to
it is valid, that is, true in each admissible partition of a language. For example,
the following questions of L?

CPL are safe, but no PPA to them is valid:19

(76) ?p

(77) ?± |p, q|

A question which is not safe is called risky.

Definition 13. (Riskiness) A question Q is risky iff dQ∩TP = ∅ for some
admissible partition P.

Thus a risky question is a question which has no true PPA in at least one ad-
missible partition of the language. Here are simple examples of risky questions
of L?

CPL:

(78) ?{p, q}
(79) ?{p ∧ q, p ∧ ¬q}

A language of the considered kind usually involves both safe and risky ques-
tions. There are notable exceptions, however.

The above concepts of safety and riskiness originate from Belnap’s erot-
etic semantics (cf. Belnap & Steel 1976, p. 130).20 We have rephrased Bel-
nap’s definitions in MiES terms. Safety and riskiness correspond to non-
informativeness resp. informativeness in the sense of Groenendijk & Stokhof
(1997). In view of their analysis, each question (semantically construed) is
noninformative. In general, when questions are conceptualized semantically
as partitions of the logical space, there is no room for risky questions.

19 Recall that ?p abbreviates ?{p,¬p}, and ?±|p, q| abbreviates ?{p∧ q, p∧¬q,¬p∧
q,¬p ∧ ¬q}.

20 Belnap writes that the notion of safety is due to Harrah.
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5.2 Presuppositions and prospective presuppositions

Presuppositions are conceptualized differently in different theories (for an
overview see Potts 2015). MiES adopts Belnap’s account:21

Definition 14. (Presupposition) A d-wff B is a presupposition of a ques-
tion Q iff A |= B for each A ∈ dQ.

Thus a presupposition of a question is a d-wff which is entailed by each PPA
to the question. For instance, the following:

(80) p ∨ q

is an example of a presupposition of question (78). Here are examples of
presuppositions of question (79):

(81) (p ∧ q) ∨ (p ∧ ¬q)
(82) q ∨ ¬q
(83) p

Observe that each presupposition of a question which is sound (in an
admissible partition) is true (in the partition), and that a question which
has a false presupposition cannot be sound (again, with respect to a given
admissible partition). On the other hand, the truth of a presupposition of a
question need not warrant the soundness of the question. For instance, r is a
presupposition of the following question of L?

CPL:

(84) ?{p ∧ r, q ∧ r}

but the question is not sound in an admissible partition in which r is true and
both p and q are not true.

A presupposition whose truth warrants soundness of the question is called
a prospective presupposition. More precisely:

Definition 15. (Prospective presupposition) A presupposition B of ques-
tion Q is prospective iff B ||= dQ.

For example, the following d-wff:

(85) r ∧ (p ∨ q)

is a prospective presupposition of question (84), whereas the d-wff p is a pro-
spective presupposition of the question (79). Note that these are not the only
prospective presuppositions of the analyzed questions. In general, a prospect-
ive presupposition of a question of the form ?{A1, . . . , An} (of L?

CPL or L?
MCL)

is either a disjunction of all the PPAs to the question or a d-wff which is
equivalent to such disjunction (by “equivalence” we mean here mutual entail-
ment in a language). One can show that the existential generalization ∃xAx is

21 “A question, q, presupposes a sentence, A, if and only the truth of A is a logically
necessary condition for there being some true answer to q”(Belnap 1969b, p. 29).
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a prospective presupposition of the corresponding existential which-question
?S(Ax) of L?

MCL. The remaining prospective presuppositions are equivalent to
the existential generalization.

We do not claim, however, that each question of any language has pro-
spective presuppositions. For instance, the following general which-question
of L?

MCL:

(86) ?U(Px)

where P is a predicate, has no prospective presupposition, because the condi-
tion “there exist finitely many x’s such that Px” is inexpressible in L?

MCL.

Notation. The set of presuppositions of a question Q will be referred to as
PresQ, whereas the set of prospective presuppositions of Q will be designated
by PPresQ.

5.3 Types of questions

Normal questions

The soundness of a question yields that each presupposition of the question,
if there is any, is true. Yet, the converse need not hold. If it (nonvacuously)
holds, MiES labels the question as normal.

Definition 16. (Normal question) A question Q is normal iff PresQ 6= ∅
and PresQ ||= dQ.

The clause “PresQ 6= ∅” is dispensable when valid (i.e. true in each admissible
partition) d-wffs occur in a language.22

Regular questions

Regular questions constitute a subclass of normal questions. By and large, a
regular question is a question which is normal due to its prospective presup-
position(s).

Definition 17. (Regular question) A question Q is regular iff there exists
B ∈ PresQ such that B ||= dQ.

There is no warranty that each question of any language has prospective
presuppositions. Thus there may exist questions which are normal but not
regular.

22 Yet, the clause is not superfluous. There exist “tautology-free” logics. Kleene’s
“strong” three-valued logic is a classical example here.
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Remark. Regularity and normality are semantic concepts. One cannot say
that a question (syntactically construed) is normal/regular in an “absolute”
sense. For instance, existential which-questions are normal (and regular) in
L?
MCL, but would cease to be normal when admissible partitions were determ-

ined by all models of the language. If we enriched L?
MCL with a quantifier

“there exist finitely many”, general which-questions would become regular
(provided that admissible partitions were defined as before).

Self-rhetorical questions and proper questions

Generally speaking, a question is proper iff the truth of all its presuppositions
warrants the existence of a true PPA to it, but does not warrant the truth of
any single PPA to the question. A question which fulfils the latter condition
may be called self-rhetorical. More precisely:

Definition 18. (Self-rhetorical question) A question Q is self-rhetorical
iff PresQ |= A for some A ∈ dQ.

Thus a question is self-rhetorical just in case some PPA to the question is
entailed by a presupposition or presuppositions of the question. Or, to put it
differently, the question is already resolved by some of its presuppositions.

Remark. Observe that questions can be self-rhetorical for diverse logical reas-
ons. If a question has a valid d-wff among its PPAs, it is self-rhetorical. If
all the PPAs to a question are equivalent and hence the “choice” offered by
the question is only apparent, the question is self-rhetorical as well. A much
weaker condition is also sufficient for self-rhetoricity: there is a PPA which
is entailed by all the other PPAs. If this is the case, the sets of PPAs and
of presuppositions overlap. Here is an example of a self-rhetorical question
having this property:

(87) ? {p, q, p ∨ q}

Proper questions are defined by:

Definition 19. (Proper question) A question Q is proper iff Q is normal,
but not self-rhetorical.

5.4 Types of answers

So far we have operated with only one category of answers, that is, PPAs.
However, the conceptual apparatus of MiES allows us to define further types
of answers.
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Just-complete answers

The following definition introduces a concept that is not superfluous when
PPA’s are defined syntactically.

Definition 20. (Just-complete answer) A d-wff B is a just-complete an-
swer to a question Q iff B /∈ dQ, and for some A ∈ dQ, both B |= A and
A |= B hold.

Just-complete answers are equivalent to PPAs, but are not PPAs. It is con-
venient to introduce the following notational convention:

[[dQ]] = {B: for some A ∈ dQ,B |= A and A |= B}

The set [[dQ]] comprises the PPAs to Q and the just-complete answers to Q.

Partial answers

As for MiES, a partial answer is a d-wff that is neither a PPA nor a just-
complete answer, but which is true iff a true PPA belongs to some specified
proper subset of the set of all the PPAs to the question. This condition is
supposed to hold for each admissible partition. More formally:

Definition 21. (Partial answer) A d-wff B is a partial answer to a ques-
tion Q iff B /∈ [[dQ]], but for some non-empty proper subset Y of dQ:

(1 ) B ||= Y , and
(2 ) for each C ∈ Y : C |= B.

Examples of partial answers will be given below.

Eliminative answers

Generally speaking, an eliminative answer, if true, eliminates at least one PPA
to the question. In languages in which negation occurs “eliminates” amounts
to “entails the negation.” Yet, since negation need not occur in a language of
the kind considered here, we need a more general concept of elimination.

Definition 22. (Eliminating)

(1) A d-wff B eliminates a d-wff C iff for each admissible partition 〈TP,UP〉:
if B ∈ TP, then C ∈ UP.

(2) A d-wff B eliminates a set of d-wffs Y iff B eliminates each element of
Y .

MiES defines eliminative answers as follows:

Definition 23. (Eliminative answer) A d-wff B is an eliminative answer
to a question Q iff

(1 ) B /∈ [[dQ]], and
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(2 ) B ∈ TP for some admissible partition P, and
(3 ) there exists A ∈ dQ such that B eliminates A.

When the classical negation occurs in a language, an eliminative answer can
also be defined as a contingent d-wff which entails the negation of at least one
PPA, but is not equivalent to any PPA.

Eliminative answers versus partial answers. There are eliminative answers
which are not partial answers, and there are partial answers which are not
eliminative. For consider the following question of L?

CPL:

(88) ?{p, q, r}

The d-wff:

(89) p ∨ q

is a partial answer to question (88), but is not an eliminative answer to the
question. The d-wff:

(90) ¬r

is an eliminative answer to question (88), but is not a partial answer to it. So
one cannot identify partial answers with eliminative answers. These categories
are not disjoint, however. For example, in the case of the following question
of L?

CPL:

(77) ?± |p, q|

each of the d-wffs p, ¬p, q, ¬q is both a partial answer and an eliminative
answer to the question.

Corrective answers

Roughly, a corrective answer is a contingent d-wff which eliminates all the
PPAs to the question. In MiES we express this intuition by:

Definition 24. (Corrective answer) A d-wff B is a corrective answer to
a question Q iff

(1 ) B /∈ [[dQ]], and
(2 ) B ∈ TP for some admissible partition P, and
(3 ) B eliminates dQ.

If the classical negation occurs in a language considered, clause (3 ) can be
replaced with “B entails the negation of a presupposition of Q.”

Clearly, each corrective answer is an eliminative answer (as a matter of
fact, a “maximal” one: it eliminates all the PPA’s). On the other hand, there
are eliminative answers that are not corrective in the sense of Definition 24.
As an illustration, let us consider the following question of L?

CPL:

(91) ?{p ∧ q, p ∧ r}
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The d-wffs ¬q and ¬r are eliminative answers to question (91), but are not
corrective answers to the question. Here are examples of corrective answers to
question (91):

(92) ¬p
(93) ¬(q ∨ r)

One can easily show that the set of partial answers to a question and the
set of corrective answers to the question are disjoint.

5.5 Dependencies

One can define some dependency relations between questions in terms of rela-
tions between their sets of PPAs. For the reasons of space let us only consider
two relations of this kind.

Equipollence and being weaker

Definition 25. (Equipollence of questions) A question Q is equipollent
with a question Q1 iff there exists a bijection f : dQ 7→ dQ1 such that for each
A ∈ dQ: A is equivalent to f(A).

Thus Q and Q1 are equipollent if there exists a 1–1 mapping between their
sets of PPAs such that the corresponding PPA’s entail each other.

Definition 26. (Being weaker than) A question Q is weaker than a
question Q1 iff Q and Q1 are not equipollent, but there exists a surjection
f : dQ1 7→ dQ such that for each A ∈ dQ1: A entails f(A).

The above definitions are, in principle23, due to Kubiński (1971, p. 51).
Note that in both cases it is required that the relevant mapping is a function.
By abandoning this requirement one gets more general notions. For example,
as long as being weaker is concerned, one can only require each PPA to Q1 to
entail some PPA to Q. The resultant concept of being weaker becomes akin
to that of containment in the sense of Hamblin (1958): a question Q1 contains
a question Q if from each answer to Q1 one can deduce some answer to Q. A
similar idea underlies the definition of interrogative entailment proposed by
Groenendijk & Stokhof (1997, p. 1090).

Relative soundness

Let us now introduce an auxiliary concept that is specific to MiES.

Definition 27. (Relative soundness)

(1) A question Q is sound relative to a set of d-wffs X iff X ||= dQ,

23 In principle, since Kubiński applies a concept of entailment that warrants that
contradictory d-wffs entail only contradictory d-wffs.
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(2) A question Q1 is sound relative to a question Q along with a set of d-wffs
X iff for each B ∈ dQ : X ∪ {B} ||= dQ1.

Thus Q is sound relative to X iff Q has a true PPA in every admissible
partition in which all the d-wffs in X are true. In other words, if only X
consists of truths, Q must be sound. Clause (2 ) of Definition 27 amounts to:
Q1 is sound in each admissible partition in which Q is sound and X consists
of truths.

A warning is in order. One should not confuse relative soundness with
soundness in a partition. Relative soundness is always a semantic relation.
Soundness in a partition is a property which a question has or does not have.
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6 Erotetic Inferences and How Questions Arise

There are inferential thought processes in which questions are arrived at
and thus perform the role of “conclusions.” We often pass from declarative
premise(s) to a question, as in:

(94) Mary is Peter’s mother.
If Mary is Peter’s mother, then John is Peter’s father or George
is Peter’s father.

Who is Peter’s father: John or George?

We also pass from questions to questions on the basis of declaratives, e.g.:

(95) What airline did Andrew travel by: BA, Ryanair, or Air France?
Andrew travelled by BA or Air France iff he arrived in the morn-
ing, and by Ryanair iff he arrived in the evening.

When did Andrew arrive: in the morning, or in the evening?

(96) Is Andrew lying?
Andrew lies iff he speaks very slowly.

Is Andrew speaking very slowly?

Declarative premises are not always needed. For instance:

(97) Is Andrew silly and ugly?

Is Andrew silly?

The above examples illustrate that there exist erotetic inferences (e-
inferences for short) of at least two kinds. The key difference between them lies
in the type of premises involved. In the case of e-inferences of the first kind the
set of premises comprises declaratives only. The premises of an e-inference of
the second kind consist of a question and possibly some declarative(s). Observe
that questions involved in e-inferences, both as premises and as conclusions,
are direct questions.

Some e-inferences are intuitively valid, while others are not. The following
can serve as a preliminary test of intuitive validity: put the expression “So the
question arises:” just before the conclusion. If the resultant description of an
e-inference is undoubtedly true, the inference can be regarded as intuitively
valid. Observe that (94), (95), (96), (97), as well as (21) and (22) (see page 7)
pass the test.

Inferential erotetic logic (hereafter: IEL) is a logic which analyses e-
inferences and proposes criteria of validity for these inferences. For IEL see
e.g. the monographs (Wísniewski 1995, 2013) or the introductory papers
(Wísniewski 1996, 2001).
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The key concepts of IEL are evocation of questions and erotetic implica-
tion. By defining the concept “a set of d-wffs evokes a question” one explicates
the concept: “a question arises from a set of declaratives”(cf. Wísniewski 1995,
chap. 1). By defining erotetic implication one explicates the intuitive notion:
“a question arises from a question on the basis of a set of declaratives”(again,
cf. Wísniewski 1995, chap. 1). Validity of e-inferences of the first kind is then
defined in terms of evocation, while validity of e-inferences of the second kind
is defined by means of erotetic implication. Thus, although the concepts of
evocation and erotetic implication are distinct, there is a common idea that
underlies the analysis of validity of e-inferences provided by IEL: a question
that is the conclusion of a valid e-inference arises from the premises.

Remark. In what follows we will define evocation and erotetic implication
by using the conceptual apparatus of MiES. As for IEL, however, the desired
property of possible answers to NLQ’s (see subsection 3.12) is just-sufficiency,
where “just-sufficient” means “satisfying the request of a question by provid-
ing neither less nor more information than it is requested”.24 Thus an e-
formula/question Q whose set of PPA’s is dQ is supposed to represent a NLQ
read as its just-sufficient possible answers were simply the sentences formal-
ized by the d-wffs in dQ. One should bear this in mind when thinking about
intuitive contents of the relevant concepts.

6.1 Evocation of questions

The basic intuition which underlies the concept of evocation is very simple. Let
X be a set of declarative sentences/d-wffs. If the truth of all the sentences/d-
wffs in X guarantees the existence of a true PPA to a question Q, but does
not warrant the truth of any single PPA to Q, we say that X evokes Q. For
instance, the (singleton set made up of the) sentence: “Somebody likes Mary”
evokes the question: “Who likes Mary?”. Similarly, the set of premises of (94)
above evokes the question which is the conclusion.

We define question evocation as follows:

Definition 28. (Evocation of questions) A set of d-wffs X evokes a ques-
tion Q (in symbols: E(X,Q)) iff

(1 ) X ||= dQ, and
(2 ) for each A ∈ dQ : X |6|= {A}.

Clause (2) is formulated in terms of mc-entailment for uniformity only, since
X does not mc-entail {A} iff X does not entail A. Clause (1) requires the
evoked question to be sound relative to the evoking set. Clause (2), in turn,
requires any PPA to an evoked question to be carrier of information that
cannot be (deductively) extracted from the evoking set only.

24 Just-sufficient possible answers are often called direct answers and papers devoted
to IEL follow this convention.
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One can easily show that a normal question Q is evoked by a set of d-wffs
X iff each presupposition of Q is entailed by X, but X entails no PPA to
Q. When Q is a regular question, the situation is even simpler: X evokes Q
just in case X entails a prospective presupposition of Q without entailing any
PPA to Q.25 We also have:

Corollary 2. A question Q is proper iff PresQ 6= ∅ and E(PresQ,Q).

Examples of evocation

We write E` to indicate that the underlying logic of d-wffs is `. For brevity,
we use object-level language expressions instead of their metalinguistic names,
and we simply list the elements of evoking sets.

(98) ECPL(p ∨ ¬p, ?p)
(99) ECPL(p ∨ q, ?p)

(100) ECPL(p ∨ q, ?{p, q})
(101) ECPL(p→ q ∨ r, p, ?{q, r})
(102) ECPL(p ∧ q → r,¬r, ?{¬p,¬q})

The symbols ♦ and � stand for the modal operators of possibility and neces-
sity, respectively.

(103) ES4(♦p,♦¬p, ?p)
(104) ES4(¬�p, ?{�¬p,♦p})
(105) ES4(p, ?�♦p)

(106) ES4(¬�p, ?�¬�p)

The letters P, R stand for one-place predicates, and the letters a, b for
individual constants of L?

MCL.

(107) EMCL(∃x(Px ∧ (x = a ∨ x = b)), ?{Pa, Pb})
(108) EMCL(∀x(Px ∨ Rx), ?{Pa, Ra})
(109) EMCL(∃xPx, ?S(Px))

(110) EMCL(∀x(Px↔ x = a) ∨ ∀x(Px↔ (x = a ∨ x = b)), ?U(Px))

Note that evocation is strongly dependent on the underlying logic of d-
wffs. For example, (the counterparts of) (105) and (106) do not hold for S5.
When we take InqB as a basis, neither (99) nor (102) is true. (109) does not
hold in view of classical logic, but holds in L?

MCL because we consider only
normal models of the language of MCL.

For further examples of evocation, in particular evocation in first-order
languages enriched with questions see e.g. (Wísniewski 1995, chap. 5) or
(Wísniewski 2013, chap. 6).

25 The relevant types of questions are defined in subsection 5.3.
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6.2 Erotetic implication

The e-inference described in (95) (see page 44) is a paradigmatic example of
intuitively valid e-inference of the second kind. The conclusion: “When did
Andrew arrive: in the morning, or in the evening?” is erotetically implied
by the premises: “What airline did Andrew travel by: BA, Ryanair, or Air
France? Andrew travelled by BA or Air France iff he arrived in the morning,
and by Ryanair iff he arrived in the evening.”

The conceptual apparatus of MiES allows us to define erotetic implication
in the following way:

Definition 29. (Erotetic implication) A question Q implies a question
Q1 on the basis of a set of d-wffs X (in symbols: Im(Q,X,Q1)) iff:

(1 ) for each A ∈ dQ : X ∪ {A} ||= dQ1, and
(2 ) for each B ∈ dQ1 there exists a non-empty proper subset Y of dQ such

that X ∪ {B} ||= Y .

Clause (1 ) of the above definition amounts to the following: if the implying
question, Q, is sound (in an admissible partition) and all the d-wffs in X
are true (in the partition), then the implied question, Q1, is sound (in the
partition) as well. In other words, clause (1 ) requires question Q1 to be sound
relative to question Q along with X. Clearly, the question: “When did Andrew
arrive: in the morning, or in the evening?” is sound relative to the premises
of (95). Clause (2 ), in turn, amounts to the fact that each set made up of a
PPA to the implied question and the declarative premises narrows down the
“space of possibilities” initially offered by the set of PPA’s to the implying
question. Coming back to the example. If the answer “Andrew arrived in the
morning” is true and the declarative premise is true, then the proper subset :

(111) {Andrew travelled by BA, Andrew travelled by Air France}

of the set of PPA’s to the implying question must contain a true PPA to
the question. If, however, the second PPA to the implied question, namely
“Andrew arrived in the evening” is true and the declarative premise is true,
the following PPA to the implying question:

(112) Andrew travelled by Ryanair

must be true. In other words, the true PPA to the implying question belongs
to the following proper subset of the set of PPA’s to the question:

(113) {Andrew travelled by Ryanair}

which happens to be a singleton set.
The peculiarity of erotetic implication is its goal-directedness: an implied

question is semantically grounded in the implying question and, at the same
time, facilitates answering the implying question.
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Narrowing down vs. answering

Observe that clause (2 ) of Definition 29 is satisfied, int. al., when the following
condition holds:

(dp) for each B ∈ dQ1: X ∪ {B} entails a PPA to Q or a partial answer to
Q.

On the other hand, the clause (2 ) yields (dp) given that mc-entailment in
the language is compact (i.e. X mc-entails Y iff there exist finite subsets X1

of X and Y1 of Y such that X1 mc-entails Y1) and the language includes
disjunction classically construed.

One can easily prove:

Corollary 3. If a language includes classical disjunction and conjunction,
mc-entailment in the language is compact, and Q as well as Q1 are normal
questions, then Q implies Q1 on the basis of X iff:

(1) a prospective presupposition of Q entails, together with X, a prospective
presupposition of Q1, and

(2) each PPA to Q1 entails, together with X, a PPA to Q or a partial answer
to Q.

Note that the initial assumptions of Corollary 3 are satisfied when the
underlying logic of declaratives is classical logic (both propositional and first-
order). But, for example, mc-entailment in L?

MCL is not compact and thus in
the general setting one cannot define erotetic implication by using the clauses
(1 ) and (2 ) of Corollary 3.

Some properties of erotetic implication

Mutual soundness. An implied question need not be sound relative to the de-
clarative premises themselves, and similarly for the implying question. How-
ever, the following holds:

Corollary 4. Let Im(Q,X,Q1). Then X ||= dQ iff X ||= dQ1.

As an immediate consequence of Corollary 4 we get:

Corollary 5. Let Im(Q,X,Q1) and let P = 〈TP,UP〉 be an admissible parti-
tion of the language such that X ⊆ TP. Then Q1 is sound in P iff Q is sound
in P.

Table 1 displays possible connections. It shows that erotetic implication
behaves in a somewhat non-standard way. Given that X consists of truths,
sound questions are implied only by sound questions, and unsound questions
imply only unsound questions.
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Table 1. From implying question to implied question

Q X Q1

sound in P X ⊆ TP sound in P
unsound in P X ⊆ TP unsound in P

sound in P X 6⊆ TP sound in P or unsound in P
unsound in P X 6⊆ TP sound in P or unsound in P

The transitivity issue. Erotetic implication is not “transitive”: it happens that
Im(Q,X,Q1) and Im(Q1, X,Q2) hold, but Im(Q,X,Q2) does not hold. Here
is a simple example taken from language L?

CPL. We have:

(114) ImCPL(?p, ?{p ∧ q, p ∧ ¬q,¬p})

(115) ImCPL(?{p ∧ q, p ∧ ¬q,¬p}, ?q)

but we do not have ImCPL(?p, ?q). As the example illustrates, the lack of
transitivity is a virtue rather than a vice.

Another interesting feature of erotetic implication is its ampliativity. For
instance,

(116) ?q

is not implied by:

(117) ?p

on the basis of:

(118) q → p

but one can reach (116) from (117) and (118) in two steps due to:

(119) ImCPL(?p, q → p, ?{p,¬p, q})

(120) ImCPL(?{p,¬p, q}, ?q)

A regular erotetic implication is “transitive”, however. One gets the defin-
ition of regular erotetic implication by replacing clause (2 ) of Definition 29
with:

(rg) for each B ∈ dQ1 there exists C ∈ dQ such that X ∪ {B} |= C.

Examples of erotetic implication

In presenting examples we adopt analogous conventions as in the case of evoc-
ation (see page 46).

(121) ImCPL(?{p, q, r}, ?{p, q ∨ r})

(122) ImCPL(?{p, q ∨ r}, ?{p, q, r})
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Note that (122), unlike (121), is regular, i.e. the clause (rg) holds for it.

(123) ImCPL(?{p, q}, p ∨ q, ?p)

The disjunction p ∨ q is indispensable in (123); if it were dropped, erotetic
implication would not hold.

(124) ImCPL(?{p, q,¬(p ∨ q)}, ?p)

(125) ImCPL(?p, p↔ q, ?q)

(126) ImCPL(?± |p, q|, ?p)

(127) ImCPL(?p, ?± |p, q|)

Observe that (126) is not regular, but is analytic26, while (127) is not analytic,
but is regular.

(128) ImCPL(?(p⊗ q), ?± |p, q|)

where ⊗ is any of the connectives: ∧,∨,→,↔.

(129) ImCPL(?± |p, q|, p, ?q)

(130) ImMCL(?S(Px),∀x(Px↔ Rx), ?S(Rx))

(131) ImMCL(?U(Px),∀x(Px↔ Rx), ?U(Rx))

(132) ImMCL(?S(Px),∀x(Rx→ Px),∃xRx, ?S(Rx))

(133) ImMCL(?S(Px),∃xPx, ?Pa)

(134) ImMCL(?S(Px),∀x(Px↔ Rx ∧ Tx),∃x(Rx ∧ Tx)), ?± |Ra, Ta|)

(135) ImMCL(?{Pa, Pb},∀x(Px↔ Rx ∧ Tx), Ra, Tb, ?{Rb, Ta})

As in the case of evocation, erotetic implication is strongly dependent upon
the underlying logic of declaratives. For instance, the counterparts of (123),
(124), (126), (127) and (128) do not hold in InqB, while (132), (133) and (134)
would not hold if each model of LMCL had been regarded as normal.

For further examples, properties, and types of erotetic implication see
Wísniewski (1994, 1996, 2001); see also Wísniewski (1995, chap. 7) or Wísniewski
(2013, chap. 7).

26 Im(Q,X,Q1) is analytic iff X = ∅ and each immediate subformula of a PPA to
Q1 is a subformula or negation of a subformula of a PPA to Q.
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7 Other Developments

For decades, research on questions focused on their structure, semantic rep-
resentations and the answerhood problem. These topics are still relevant, but,
since the late 1980s, are becoming overshadowed by a focus on the role of
questions in inquiry, reasoning, issue management and dialogue, and so forth.

This change in perspective was initiated by Jaakko Hintikka and his In-
terrogative Model of Inquiry (hereafter: IMI).27 IMI considers an inquiry as
an interrogative game, played by an Inquirer and an external source of in-
formation. The Inquirer is permitted to perform deductive moves as well as
interrogative moves. The latter amount to putting auxiliary questions; the
answers received serve as premises in further moves. The choice between ad-
missible moves, however, is a matter of strategy, and interrogative moves are
not viewed as inferences.

A theory of inferences which have questions as conclusions is proposed by
IEL (see Section 6, also for references). IEL is not just an addition to IMI,
but differs from it conceptually. Problem-solving and question answering are
modelled in IEL in terms of erotetic search scenarios (see Wísniewski 2003,
2013). As for proof theory, IEL gave rise to the method of Socratic proofs
(cf. e.g. Wísniewski 2004, Leszczyńska-Jasion et al. 2013) and the Synthetic
Tableaux Method (cf. e.g. Urbański 2001).

Question raising, erotetic inferences and interrogative problem-solving at-
tracted attention of some researchers working within the paradigm of adaptive
logics (cf. e.g. Meheus 1999, 2001, De Clercq 2005).

Questions have been extensively analyzed by means of tools taken from
dynamic semantics (cf. the collection of papers Aloni et al. 2007).

Recently questions became fully fledged categories in dynamic epistemic
logics (cf. e.g. van Benthem & Ş. Minicǎ 2012, Pelǐs & Majer 2011) and belief
revision theory (see e.g. Enqvist 2010).

Current research on dialogues has shed new light on different aspects of
questions and questioning (see e.g. Ginzburg 2012).

27 Hintikka’s papers devoted to IMI written in the 1980s and 1990s are collected in
(Hintikka 1999). See also (Hintikka 2007).
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8 Further Readings

The survey paper (Harrah 2002) provides a comprehensive exposition of logical
theories of questions elaborated till late 1990s. Supplementary information
about more linguistically oriented approaches can be found in (Groenendijk
& Stokhof 1997) (reprinted as Groenendijk & Stokhof 2011), (Lahiri 2002),
(Fiengo 2007), and (Krifka 2011).

Theories of questions and answers proposed by Harrah, Åqvist, Belnap,
Kubiński, and Hintikka are concisely presented in (Wísniewski 1995, chap. 4);
for a more detailed exposition of Kubiński’s theory see (Wísniewski 1997). For
Hintikka’s IMI and the underlying approach to questions see (Hintikka et al.
2002).

Ginzburg (2011a) provides a survey of recent developments in the research
on questions, both in logic and in linguistics.

All the items recommended above contain extensive bibliographies.
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munt, eds, ‘Erotetic Logic, Deontic Logic, and Other Logical Matters. Essays
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Urbański, M. (2001), ‘Synthetic tableaux and erotetic search scenarios: Extension
and extraction’, Logique et Analyse 173–175, 389–427.

van Benthem, J. & Ş. Minicǎ (2012), ‘Toward a dynamic logic of questions’, Journal
of Philosophical Logic 41, 633–669.

Vanderveken, D. (1990), Meaning and Speech Acts, 2 vols., Cambridge University
Press, Cambridge.

Vendler, Z. (1972), Res Cogitans. An Essay in Rational Psychology, Cornell Univer-
sity Press, Ithaca, NY.
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