
How to do things with types⇤

Robin Cooper

University of Gothenburg

Abstract

We present a theory of type acts based on type theory relating to a general
theory of action which can be used as a foundation for a theory of linguistic acts.

Contents

1 Introduction 1

2 Type acts 2

3 Coordinating interaction in games 5

4 Conclusion 9

1 Introduction

The title of this paper picks up, of course, on the seminal book How to do things with
words by J.L. Austin [Aus62], which laid the foundation for speech act theory. In
recent work on dialogue such as [Gin12] it is proposed that it is important for linguistic
analysis to take seriously a notion of linguistic acts. To formulate this, Ginzburg uses
TTR (“Type Theory with Records”) as developed in [Coo12]. The idea was also very
much a part of the original work on situation semantics [BP83] which has also served
as an inspiration for the work on TTR.

TTR was also originally inspired by work on constructive type theory [ML84,
NPS90] in which there is a notion of judgement that an object a is of a type T , a : T .1

We shall think of judgements as a kind of type act and propose that there are other
type acts in addition to judgements. We shall also follow [Ran94] in including types of
events (or more generally, situations) in a type theory suitable for building a theory of
action and of linguistic meaning.

⇤The work for this paper was supported in part by VR project 2009-1569, SAICD.
1While TTR has borrowed liberally from the many important ideas in constructive type theory,

it does not adhere rigidly to the intuitionistic programme of the original and it has features, such as
intersection and union types and a general model theoretic approach, which might make some type
theorists judge it not to be a type theory at all. We have found it productive, however, to relate the
ideas from modern type theory to the classical model theoretic approach adopted in formal semantics
stemming from the original work by [Mon74].

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 155 NLCS’14 / NLSR 2014



This paper attempts to explore what kind of general theory of action such a notion
of linguistic acts could be embedded in and tries to develop the beginnings of such
a theory using type theory as the starting point. We will here only develop a non-
linguistic example, although we will point out relationships to linguistic acts as we go
along.

2 Type acts

Imagine a boy and a dog playing a game of fetch. (The boy throws a stick and the dog
runs after it and brings it back to the boy.) The boy and the dog have to coordinate
and interact in order to create an event of the game of fetch. This involves doing more
with types than just making judgements. For example, when the dog observes the
situation in which the boy raises the stick, it may not be clear to the dog whether this
is part of a fetch-game situation or a stick-beating situation. The dog may be in a
situation of entertaining these two types as possibilities prior to making the judgement
that the situation is of the fetch type. We will call this act a query as opposed to a
judgement. Once the dog has made the judgement2 what it has observed so far is an
initial segment of a fetch type situation it has to make its own contribution in order
to realize the fetch type, that is, it has to run after the stick and bring it back. This
involves the creation of a situation of a certain type. Thus creation acts are another
kind of act related to types. Creating objects of a given type often has a de se [see, for
example, Per79, Lew79, Nin10, Sch11] aspect. The dog has to know that it itself must
run after the stick in order to make this a situation in which it and the boy are playing
fetch. There is something akin to what Perry calls an essential indexical here, though,
of course, the dog does not have indexical linguistic expressions. It is nevertheless part
of the basic competence that an agent needs in order to be able to coordinate its action
with the rest of the world that it has a primitive sense of self which is distinct from
being able to identify an object which has the same properties as itself. We will follow
Lewis in modelling de se in terms of functional abstraction over the “self”. In our
terms this will mean that de se type acts involve dependent types.

In standard type theory we have judgements such as o : T “o is of type T” and T
true “there is something of type T”. We want to enhance this notion of judgement by
including a reference to the agent A which makes the judgement, giving judgements
such as o :A T “agent A judges that o is of type T” and :A T “agent A judges that there
is some object of type T”. We will call the first of these a specific judgement and the
second a non-specific judgement. Such judgements are one of the three kinds of acts
represented in (1) that we want to include in our type act theory. The three kinds of

2What judgement is made and what queries are entertained we imagine being governed by some
kind of Bayesian learning theory. An initial suggestion along these lines is made by [CDLL14a] who
base the learning theory on a string of probabilistic Austinian propositions, records consisting of a
situation, s, a type, T and a probability, p, corresponding to a judgement by the learning agent that s
if of type T with probability p.

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 156 NLCS’14 / NLSR 2014



(1) Type Acts

judgements

specific o :A T “agent A judges object o to be of type
T”

non-specific :A T “agent A judges that there is some
object of type T”

queries

specific o :A T? “agent A wonders whether object o is
of type T”

non-specific :A T? “agent A wonders whether there
is some object of type T”

creations

non-specific :A T ! “agent A creates something of type
T”

type acts in (1) underly what are often thought of as core speech acts: assertion, query
and command. Note that creations only come in the non-specific variant. You cannot
create an object which already exists.

Creations are also limited in that there are certain types which a given agent is not
able to realize as the main actor. Consider for example the event type involved in the
fetch game of the dog running after the stick. The human cannot be the main creator
of such an event since it is the dog who is the actor. The most the human can do is
wait until the dog has carried out the action and we will count this as a creation type
act. This will become important when we discuss coordination in the fetch-game below
and it is also important in accounting for turn-taking in the coordination of dialogue.
It is actually important that the human makes this passive contribution to the creation
of the event of the dog running after the stick and does not, for example, get the game
confused by immediately throwing another stick before the dog has had a chance to
retrieve the first stick. There are other cases of event types which require a less passive
contribution from an agent other than the main actor. Consider the type of event where
the dog returns the stick to the human. The dog is clearly the main actor here but the
human has also a role to play in making the event realized. For example, if the human
turns her back on the dog and ignores what is happening or runs away the event type
will not be realized despite the dog’s best e↵orts. Something similar holds in language.
If it is your dialogue partner’s turn to make an utterance, you still have to play your

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 157 NLCS’14 / NLSR 2014



part by paying attention and trying to understand. Other event types, such as lifting
a piano, involve more equal collaboration between two or more agents, where it is not
intuitively clear that any one of the agents is the main actor. So when we say “agent
A creates something of type T” perhaps it would be more accurate to phrase this as
“agent A contributes to the creation of something of type T” where A’s contribution
might be as little as not realizing any of the other types involved in the game until T
has been realized.

De se type acts involve functions which have the agent in its domain and return a
type, that is, they are dependent types which, given the agent, will yield a type. We
will say that agents are of type Ind (“individual”) and that the relevant dependent
types, T , are functions of type (Ind!Type). We characterize de se type acts in a way
parallel to (1), as given in (2).

(2) De Se Type Acts

judgements

specific o :A T (A) “agent A judges object o to be of
type T (A)”

non-specific :A T (A) “agent A judges that there is
some object of type T (A)”

queries

specific o :A T (A)? “agent A wonders whether object
o is of type T (A)”

non-specific :A T (A)? “agent A wonders whether
there is some object of type T (A)”

creations

non-specific :A T (A)! “agent A creates something of
type T (A)”

From the point of view of the type theory de se type acts seem more complex than
non-de se type acts since they involve a dependent rather than a non-dependent type
and a functional application of that dependent type to the agent. However, from a
cognitive perspective one might expect de se type acts to be more basic. Agents which
perform type acts using types directly related to themselves are behaving egocentrically
and one could regard it as a more advanced level of abstraction to consider types which
are independent of the agent. This seems a puzzling way in which our notions of type
seem in conflict with out intuitions about cognition.

While these type acts are prelinguistic (we need them to account for the dog’s
behaviour in the game of fetch) we will try to argue later that they are the basis on

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 158 NLCS’14 / NLSR 2014



which the notion of speech act [Aus62, Sea69] is built. The idea would be that our
division of type acts into the three classes judgements, queries and creations underly
the core speech acts assertion, questions and imperatives and that other kinds of speech
acts are related to one of the three kinds of type acts. Our notion of using types in
query acts seems intuitively related to work on inquisitive semantics [GR12] where some
propositions (in particular disjunctions) are regarded as inquisitive. However, this will
still allow us to make a distinction between questions and assertions in natural language
as argued for by [Gin12] and [GCF14].

3 Coordinating interaction in games

Let us now apply these notions to the kind of interaction that has to take place between
the human and the dog in a game of fetch. First consider in more detail what is actually
involved in playing a game of fetch, that is creating an event of the particular type
represented by “game of fetch”. Each agent has to keep track in some way of where
they are in the game and in particular what needs to happen next. We analyze this
by saying that each agent has an information state which we will model as a record.
We need to keep track of the progression of types of information state for an agent
during the course of the game. We will refer to the types of information states as
gameboards. Our notions of information state and gameboard are taken from [Lar02]
and [Gin12] respectively as well as a great deal of related literature on the gameboard
or information state approach to dialogue analysis originating from [Gin94]. We have
adapted the notions somewhat to our own purposes but we want to claim that the
kind of information states that have been proposed in the literature on dialogue are
developments from the kind of information states needed to account for non-linguistic
coordination. The idea is that as part of the event occurs then the agent’s gameboard
is updated so that an event of the next type in the string is expected. For now, we will
consider gameboards which only place one requirement on information states, namely
that there is an agenda which indicates the type of the next move in the game. Thus
if the agent is playing fetch and observes an event of the type where the human throws
the stick, then the next move in the game will be an event of the type where the dog
runs after the stick. If the actor in the next move is the agent herself then the agent
will need to create an event of the type of the next move if the game is to progress. If
the actor in the next move is the other player in the game, then the agent will need to
observe an event and judge it to be of the appropriate type in order for the game to
progress. The type of information states, InfoState, will be (3a). (In dialogue, we see
more complex information states which include additional fields in the record types.)
The type of the initial information state, InitInfoState, will be one where the agenda
is required to be the empty list.

(3) a.
⇥
agenda : [RecType]

⇤

b.
⇥
agenda=[] : [RecType]

⇤

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 159 NLCS’14 / NLSR 2014



((3b) is a manifest field as discussed in [Coo12] based on an idea by Thierry Co-
quand. A manifest field restricts the type in the field to the singleton type whose only
member is the object represented after ‘=’.) We can now see the rules of the game cor-
responding to the type as a set of update functions which indicate for an information
state of a given type what type the next information state may belong to if an event of
a certain type occurs. These update functions correspond to the transitions in a finite
state machine. This is given in (4).

(4) { �r:
⇥
agenda=[]:[RecType]

⇤
.⇥

agenda=[
⇥
e:pick up(a,c)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:pick up(a,c)

⇤
]:[RecType]

⇤

�e:
⇥
e:pick up(a,c)

⇤
.⇥

agenda=[
⇥
e:attract attention(a,b)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:pick up(a,c)

⇤
]:[RecType]

⇤

�e:
⇥
e:attract attention(a,b)

⇤
.⇥

agenda=[
⇥
e:throw(a,c)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:throw(a,c)

⇤
]:[RecType]

⇤

�e:
⇥
e:throw(a,c)

⇤
.⇥

agenda=[
⇥
e:run after(b,c)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:run after(b,c)

⇤
]:[RecType]

⇤

�e:
⇥
e:run after(b,c)

⇤
.⇥

agenda=[
⇥
e:pick up(b,c)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:pick up(b,c)

⇤
]:[RecType]

⇤

�e:
⇥
e:pick up(b,c)

⇤
.⇥

agenda=[
⇥
e:return(b,c,a)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:return(b,c,a)

⇤
]:[RecType]

⇤

�e:
⇥
e:return(b,c,a)

⇤
.⇥

agenda=[]:[RecType]
⇤

}

Since we are treating an empty agenda as the condition for the input to the initial
state in the corresponding automaton and also the output of the final state we auto-
matically get a loop e↵ect from the final state to the initial state so that the game
can be repeated indefinitely many times. In order to prevent the loop we would have
to distinguish the type corresponding to the initial and final states. Note that the
functions in (4) are of the type (5).

(5) (
⇥
agenda:[RecType]

⇤
!(Rec!RecType))

That is, they map an information state containing an agenda (modelled as a record
containing an agenda field) and an event (modelled as a record) to a record type. This
is true of all except for the function corresponding to the initial state which is of type
(6).

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 160 NLCS’14 / NLSR 2014



(6) (
⇥
agenda:[RecType]

⇤
!RecType)

That is, it maps an information state directly to a record type and does not require an
event. We can think of this set as the set of rules which define the game. It is of the
type (7).

(7) {((
⇥
agenda:[RecType]

⇤
!(Rec!RecType))_(

⇥
agenda:[RecType]

⇤
!RecType))}

Let us call the type in (7) GameRules. Sets of game rules of this type define the rules
for specific participants as in (4). In order to characterize the game in general we need
to abstract out the roles of the individual participants in the game. This we will do by
defining a function from a record containing individuals appropriate to play the roles
in the game thus revising (4) to (8).

(8) �r⇤:

2

6666664

h : Ind
chuman : human(h)
d : Ind
cdog : dog(d)
s : Ind
cstick : stick(s)

3

7777775
.

{ �r:
⇥
agenda=[]:[RecType]

⇤
.⇥

agenda=[
⇥
e:pick up(r⇤.h,r⇤.s)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:pick up(r⇤.h,r⇤.s)

⇤
]:[RecType]

⇤

�e:
⇥
e:pick up(r⇤.h,r⇤.s)

⇤
.⇥

agenda=[
⇥
e:attract attention(r⇤.h,r⇤.d)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:pick up(r⇤.h,r⇤.s)

⇤
]:[RecType]

⇤

�e:
⇥
e:attract attention(r⇤.h,r⇤.d)

⇤
.⇥

agenda=[
⇥
e:throw(r⇤.h,r⇤.s)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:throw(r⇤.h,r⇤.s)

⇤
]:[RecType]

⇤

�e:
⇥
e:throw(r⇤.h,r⇤.s)

⇤
.⇥

agenda=[
⇥
e:run after(r⇤.d,r⇤.s)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:run after(r⇤.d,r⇤.s)

⇤
]:[RecType]

⇤

�e:
⇥
e:run after(r⇤.d,r⇤.s)

⇤
.⇥

agenda=[
⇥
e:pick up(r⇤.d,r⇤.s)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:pick up(r⇤.d,r⇤.s)

⇤
]:[RecType]

⇤

�e:
⇥
e:pick up(r⇤.d,r⇤.s)

⇤
.⇥

agenda=[
⇥
e:return(r⇤.d,r⇤.s,r⇤.h)

⇤
]:[RecType]

⇤
,

�r:
⇥
agenda=[

⇥
e:return(r⇤.d,r⇤.s,r⇤.h)

⇤
]:[RecType]

⇤

�e:
⇥
e:return(r⇤.d,r⇤.s,r⇤.h)

⇤
.⇥

agenda=[]:[RecType]
⇤

}

(8) is of type (Rec!GameRules) which we will call Game.

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 161 NLCS’14 / NLSR 2014



Specifying the rules of the game in terms of update functions in this way will not
actually getting anything to happen, though. For that we need type acts of the kind we
discussed. We link the update functions to type acts by means of licensing conditions
on type acts. A basic licensing condition is that an agent can create (or contribute to
the creation of) a witness for the first type that occurs on the agenda in its information
state. Such a licensing condition is expressed in (9).

(9) If A is an agent, si is A’s current information state,
si :A

⇥
agenda=T |R : [RecType]

⇤
, then :A T ! is li-

censed.

Update functions of the kind we have discussed are handled by the licensing conditions
in (10).

(10) a. If f : (T1 ! (T2 ! Type)) is an update function, A is an
agent, si is A’s current information state, si :A Ti, Ti v T1

(and si : T1), then an event e :A T2 (and e : T2) licenses
si+1 :A f(si)(e).

b. If f : (T1 ! Type) is an update function, A is an agent,
si is A’s current information state, si :A Ti, Ti v T1 (and
si : T1), si+1 :A f(si) is licensed.

(10a) is for the case where the update function requires an event in order to be triggered
and (10b) is for the case where no event is required. There are two variants of licensing
conditions which can be considered. One variant is where the licensing conditions rely
only on the agent’s judgement of information states and events occurring. The other
variant is where in addition we require that the information states and events actually
are of the types which the agent judges them to be of. (These conditions are represented
in parentheses in (10).) In practical terms an agent has to rely on its own judgement, of
course, and there is one sense in which any resulting action is licensed even if the agent’s
judgement was mistaken. There is another stricter sense of license which requires the
agent’s judgement to be correct. In the real world, though, the only way we have of
judging a judgement to be correct is to look at judgements by other agents.

Licensing conditions will regulate the coordination of successfully realized games
like fetch. They enable the agents to coordinate their activity when they both have
access to the same objects of type Game and are both willing to play. The use of the
word “license” is important, however. The agents have free will and may choose not to
do what is licensed and also may perform acts that are not licensed. We cannot build a
theory that will predict exactly what will happen but we can have a theory which tells
us what kinds of actions belong to a game. It is up to the agents to decide whether
they will play the game or not. At the same time, however, we might regard whatever
is licensed at a given point in the game as an obligation. That is, if there is a general
obligation to continue a game once you have embarked on it, then whatever type is

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 162 NLCS’14 / NLSR 2014



placed on an agent’s agenda as the result of a previous event in the game can be seen
as an obligation on the agent to play its part in the creation of an event of that type.

4 Conclusion

We have sketched the beginnings of a theory of action based on ideas from type theory.
We believe that a theory of linguistic acts in terms of updating information states as
discussed in the literature on dialogue can be seen as a development of such a basic
theory and that this makes a connection between the kind of complex coordination
involved in dialogue and coordination that is needed between non-linguistic agents who
interact with each other and the rest of the physical world.

References

[Aus62] J. Austin. How to Do Things with Words. Oxford University Press, 1962.
ed. by J. O. Urmson.

[BP83] Jon Barwise and John Perry. Situations and Attitudes. Bradford Books.
MIT Press, Cambridge, Mass., 1983.

[CDLL14a] Robin Cooper, Simon Dobnik, Shalom Lappin, and Sta↵an Larsson. A
probabilistic rich type theory for semantic interpretation. In Cooper et al.
[CDLL14b], pages 72–79.

[CDLL14b] Robin Cooper, Simon Dobnik, Shalom Lappin, and Sta↵an Larsson, edi-
tors. Proceedings of the EACL 2014 Workshop on Type Theory and Natural
Language Semantics (TTNLS). Association for Computational Linguistics,
Gothenburg, Sweden, April 2014.

[Coo12] Robin Cooper. Type theory and semantics in flux. In Ruth Kempson,
Nicholas Asher, and Tim Fernando, editors, Handbook of the Philosophy of
Science, volume 14: Philosophy of Linguistics, pages 271–323. Elsevier BV,
2012. General editors: Dov M. Gabbay, Paul Thagard and John Woods.

[GCF14] Jonathan Ginzburg, Robin Cooper, and Tim Fernando. Propositions, ques-
tions, and adjectives: a rich type theoretic approach. In Cooper et al.
[CDLL14b], pages 89–96.

[Gin94] Jonathan Ginzburg. An update semantics for dialogue. In Harry Bunt,
editor, Proceedings of the 1st International Workshop on Computational
Semantics, Tilburg University, 1994. ITK Tilburg.

[Gin12] Jonathan Ginzburg. The Interactive Stance: Meaning for Conversation.
Oxford University Press, Oxford, 2012.

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 163 NLCS’14 / NLSR 2014



[GR12] Jeroen Groenendijk and Floris Roelofsen. Course notes on
inquisitive semantics, nasslli 2012. Available at https:

//sites.google.com/site/inquisitivesemantics/documents/

NASSLLI-2012-inquisitive-semantics-lecture-notes.pdf, 2012.

[Lar02] Sta↵an Larsson. Issue-based Dialogue Management. PhD thesis, University
of Gothenburg, 2002.

[Lew79] David Lewis. Attitudes de dicto and de se. Philosophical Review, 88:513–
543, 1979. Reprinted in [Lew83].

[Lew83] David Lewis. Philosophical Papers, Volume 1. Oxford University Press,
1983.

[ML84] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, Naples, 1984.

[Mon74] Richard Montague. Formal Philosophy: Selected Papers of Richard Mon-
tague. Yale University Press, New Haven, 1974. ed. and with an introduc-
tion by Richmond H. Thomason.

[Nin10] Dilip Ninan. De Se Attitudes: Ascription and Communication. Philosophy
Compass, 5(7):551–567, 2010.

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith. Programming in
Martin-Löf ’s Type Theory, volume 7 of International Series of Monographs
on Computer Science. Clarendon Press, Oxford, 1990.

[Per79] John Perry. The problem of the essential indexical. Noûs, 13(1):3–21, 1979.
Reprinted in [Per93].

[Per93] John Perry. The Problem of the Essential Indexical and Other Essays.
Oxford University Press, 1993.

[Ran94] Aarne Ranta. Type-Theoretical Grammar. Clarendon Press, Oxford, 1994.

[Sch11] Philippe Schlenker. Indexicality and De Se reports. In Claudia Maienborn,
Klaus von Heusinger, and Paul Portner, editors, Semantics: an interna-
tional handbook of natural language meaning, pages 1561–1604. de Gruyter,
2011.

[Sea69] John R. Searle. Speech Acts: an Essay in the Philosophy of Language.
Cambridge University Press, 1969.

Joint Proceedings NLCS’14 & NLSR 2014, July 17-18, 2014, Vienna, Austria

CISUC/TR 2014-02 164 NLCS’14 / NLSR 2014


